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Abstract. Because the problem of Apollonius is generally considered over the reals, it
suffers from variance of number: there are at most eight circles simultaneously tangent
to a given trio of circles, but some configurations have fewer than eight tangent circles.
This issue arises over other non-closed fields as well. Using the tools of enriched enu-
merative geometry, we give two different ways to count the circles of Apollonius such
that invariance of number holds over any field of characteristic not 2. We also pose the
geometricity problem for local indices in enriched enumerative geometry.

1. Introduction

Given three general circles, there are eight circles that are tangent to all three. This
classical theorem, known as Apollonius’s problem or the circles of Apollonius, is in fact
a corollary of Bézout’s theorem. The moduli scheme of circles that are tangent to a
given circle is a quadric surface in P3, and the circles of Apollonius correspond to the 23

intersection points of three quadric surfaces.

All eight circles of Apollonius are only guaranteed to exist if one works over an alge-
braically closed field. However, the circles of Apollonius are generally studied over the
reals — perhaps because of the nice pictures that can be drawn in this setting. For
real circles of Apollonius, a famous result is that anything but seven can happen: if
one ignores multiplicity, there is a configuration of three real circles with n real tangent
circles for each 0 ≤ n < 7 and n = 8 [Ped70]. Even if one counts these tangent circles
with multiplicity, there are configurations with fewer than eight real tangent circles (see
Figure 1). The loss of invariance of number over non-closed fields is a common problem
in enumerative geometry. The goal of this article is to restore invariance of number for
the circles of Apollonius over any field of characteristic not 2. We will achieve this by
giving a weighted, bilinear form-valued count of these circles.

Theorem 1.1. Let k be a field of characteristic not 2. Let C1, C2, C3 ⊂ P2
k be three

circles whose centers do not lie on a shared line. Let A be the set of all circles that are
tangent to all Ci. Finally, let H denote the isomorphism class of the hyperbolic bilinear
form over k. Then each tangent circle S ∈ A determines an isomorphism class βS of
bilinear forms such that

(1.1)
∑
S∈A

βS = 4H.
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Figure 1. Fewer than 8 circles over R

Taking the rank of Equation 1.1 recovers the eight circles of Apollonius over k. Other
field invariants, such as signature, discriminant, and Hasse–Witt invariants, will tell us
new results about the arithmetic enumerative geometry of the circles of Apollonius over
fields like R, Fq, Q, and so on.

As stated, Theorem 1.1 is a direct corollary of the author’s enrichment of Bézout’s
theorem [McK21]. The goal of this article is to give different geometric interpretations
of the class βS. The first interpretation is also a corollary of [McK21].

Theorem 1.2. Assume the notation of Theorem 1.1. Each Ci determines a quadric
cone Qi ⊂ P3

k. Each S ∈ A corresponds to an intersection point s ∈
⋂
iQi with residue

field k(s). Let Vol(s) := det(∇Qi)|s ∈ k(s) be the oriented volume of the parallelepiped
spanned by the gradient vectors of the Qi at s. If no two of C1, C2, C3 are tangent and
k(s)/k is separable, then βS = Trk(s)/k〈Vol(s)〉.

Theorem 1.2 interprets βS as the intersection volume of three cones at a point. While
this interpretation is geometric, it is a step removed from the actual geometry of the
circles of Apollonius. The following theorem gives a more intrinsic interpretation of βS.

Theorem 1.3. Assume the notation of Theorem 1.1. Assume that no two of C1, C2, C3

are tangent. Let S be a circle tangent to C1, C2, C3, and assume that the field of definition
k(s) of S is separable over k. Let (ai, bi) be the center of Ci, (as, bs) the center of S, and
(xi, yi) the point at which Ci and S are tangent. Let ui = (ai−xi)(ai−as)+(bi−yi)(bi−bs)
and vi = (ai − xi)(xi − as) + (bi − yi)(yi − bs). Finally, define

(1.2) Area(s) :=
∑

{i,m,n}={1,2,3}
m<n

(−1)i+1uivmvn((am − as)(bn − bs)− (an − as)(bm − bs)).

Then βS = Trk(s)/k〈Area(s)〉. In other words, βS can be interpreted as a weighted sum
of the areas of the parallelograms determined by the centers of S and Cm, Cn, where the
weights record the “direction of tangency” of S to each Ci.

This article is part of the ongoing A1-enumerative geometry program (also known as qua-
dratic or enriched enumerative geometry). Using tools from motivic homotopy theory,
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one is able to give bilinear form-valued answers to classical questions from enumerative
geometry. The advantage of these bilinear form-valued counts is that one is no longer
restricted to algebraically closed fields — taking invariants of bilinear forms gives enu-
merative theorems over non-closed fields. See [Bra22,CDH20,DGGM21,KW21,Lev20,
LP22,LV21,McK21,Pau22,SW21] for recent work in this area.

A central problem within A1-enumerative geometry is giving geometric interpretations
for local indices. Classically (i.e. over algebraically closed fields), local indices are always
interpreted as an intersection multiplicity. We ask whether local indices can always be
viewed geometrically. We also ask whether one can classify enumerative problems in
terms of the geometric description of their local indices.

Question 1.4 (See Question 5.1). Are local indices always geometric? Can enumerative
problems be classified by the “geometric taxon” of their local indices?

In Sections 5.1 and 5.2, we give a partial answer to Question 1.4 by showing that an ana-
log of Theorem 1.2 holds for any enumerative problem that can be solved by computing
the Euler number of a vector bundle over a smooth base of positive dimension.

Theorem 1.5. Let k be a field. Let X be a smooth k-scheme of positive dimension. Let
V → X be a relatively orientable vector bundle of rank dimX, so that the local index
indp σ of any section σ : X → V at a zero p ∈ X is well-defined. Finally, assume that
k(p)/k is a separable extension. If p is a simple zero of σ, then indp σ can be geometrically
interpreted as the intersection volume of n hypersurfaces V(σ1), . . . ,V(σn) ⊂ X at p ∈⋂
iV(σi). Otherwise, indp σ is a sum of intersection volumes obtained by base changing

σ : X → V to k[[t]] and deforming to the generic fiber.

Theorem 1.5 generalizes geometric interpretations that have appeared in the literature
in A1-enumerative geometry (e.g. [McK21,Bra22]) and real enumerative geometry (see
e.g. [OT14, Section 4]).

As with Theorem 1.2, the intersection volume in Theorem 1.5 occurs in the parameter
space and is thus usually an extrinsic, rather than intrinsic, geometric interpretation of
the local indices. Theorem 1.3 inspires us to look for a better answer to Question 1.4.
See Appendix C for more on this geometricity question.

1.1. Outline. In Section 2, we set some relevant notation and give a brief overview of
the A1-enumerative version of Bézout’s theorem. In Section 3, we discuss the parameter
spaces of circles in the plane and circles tangent to a given circle. In Section 4, we
apply [McK21] to compute the GW(k)-valued Euler number of the problem of Apollonius.
We also treat variants of the problem where a subset of the original three circles are
replaced with points.

Before continuing with the circles of Apollonius, we take a brief detour in Section 5. We
first give some context for Question 1.4. We then exposit the dynamic local A1-degree of
Pauli and Pauli–Wickelgren in Section 5.2 and give an alternative construction called the
familial local degree in Section 5.3, both of which allow us to show that the intersection
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volume from Bézout’s theorem gives an answer to Question 1.4. However, the intersection
volume describes the geometry of parameter spaces rather than the intrinsic geometry of
the objects being counted, so we hope for a better answer to Question 1.4. We speculate
about what such an answer might look like in Appendix C.

Returning to the circles of Apollonius, we prove Theorem 1.3 in Section 6 with some
supporting code in Appendix A. In Section 7, we study symmetries of the set of circles
of Apollonius that arise under inversion and degeneration. Using these symmetries, we
describe a conjectural procedure (dependent on a few technical assumptions) for gener-
ating new geometric interpretations for the local indices in the problem of Apollonius.
Supporting code for Section 7 is given in Appendix B.

Acknowledgements. We thank Marc Levine and Kirsten Wickelgren for helpful con-
versations and Sabrina Pauli for a correction. The author received support from an NSF
MSPRF grant (DMS-2202825) and Kirsten Wickelgren’s NSF CAREER grant (DMS-
1552730).

2. Notation and background

Throughout this article, we let k be a field with char k 6= 2. We denote by k[[t]] and k((t))
the ring of power series and the field of Laurent series over k, respectively.

Let Pnk be projective n-space over k. We will be working with circles in the projective
plane P2

k; we denote coordinates on this projective plane by [x : y : z]. We will also
work with the moduli space of circles in P2

k, which is isomorphic to P3
k; we will use the

coordinates [c0 : c1 : c2 : c3] when working with P3
k. We denote the projective variety cut

out by homogeneous polynomials f1, . . . , fn by V(f1, . . . , fn).

We denote by GW(k) the Grothendieck–Witt group of isomorphism classes of symmetric,
non-degenerate bilinear forms over k. This group is generated by the elements 〈a〉 for
a ∈ k×, which is the isomorphism class of the form k × k → k defined by (x, y) 7→ axy.
The hyperbolic form will be denotedH := 〈1〉+〈−1〉. If L is a finite separable extension of
k, post-composition with the field trace determines a homomorphism TrL/k : GW(L)→
GW(k).

In order to make use of TrL/k, we will have a running assumption that k(q)/k is a
separable extension for any solution q ∈ P3

k to the problem of Apollonius. This separa-
bility assumption is guaranteed if k is perfect, if [k(q) : k] ≤ 2 (by our assumption that
char k 6= 2), or if char k > 8 (since [k(q) : k] ≤ 8 by the classical version of the circles of
Apollonius).

We will frequently write indp σ when discussing local indices. Here, σ refers to a section
σ : P3 → O(2)⊕3 determined by a choice of three circles in the plane. More precisely,
the space of circles tangent to a given circle is isomorphic to a quadric cone in P3, and
σ cuts out the three cones determined by our given trio of circles. The point p, which
lies in the intersection of the three cones cut out by σ, corresponds to a circle tangent to
our given three circles. The Nisnevich coordinates and local trivializations necessary to
make sense of this local index are provided by the author’s A1-enumerative treatment of
Bézout’s theorem [McK21].
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2.1. Bézout’s theorem. Classically, Bézout’s theorem counts the number of intersec-
tions (with multiplicity) of a collection of hypersurfaces in projective space. Over a
non-closed field k, one also has to scale the intersection multiplicities by the degree of
the residue field over k. However, this yields the same information as Bézout’s theorem
over the algebraic closure of k.

In order to develop a more interesting picture of Bézout’s theorem over non-closed fields,
we replace intersection multiplicity with intersection volume. Let f1, . . . , fn be homoge-
neous polynomials in k[x0, . . . , xn]. Given a common solution p (i.e. p ∈

⋂
iV(fi)), write

Vol(p) := det(∇fi)|p, which is the oriented volume of the parallelepiped spanned by the
gradient vectors of V(fi) at p. If the V(fi) meet transversely at p, then Vol(p) 6= 0 and
hence we can take 〈Vol(p)〉 ∈ GW(k(p)). This gives us [McK21, Theorem 1.2], which
we restate below. We will demonstrate how to remove the transversality hypothesis in
Section 5.2.

Theorem 2.1. Let f1, . . . , fn ∈ k[x0, . . . , xn] be homogeneous of degrees d1, . . . , dn with∑n
i=1 di ≡ n + 1 mod 2. Assume that the V(fi) meet transversely, and that k(p)/k is

separable for each p ∈
⋂
iV(fi). Then∑
p∈

⋂
i V(fi)

Trk(p)/k〈Vol(p)〉 =
d1 · · · dn

2
H.

There are two sides to Theorem 2.1. The global count d1···dn
2

H comes from computing
the Euler number of the bundle

⊕
iO(di) → Pnk ; the results in Section 4 largely follow

from this computation. The local contributions Trk(p)/k〈Vol(p)〉 are computed using
the work of Kass–Wickelgren [KW19,KW21] (see also [BBM+21,BMP21]). While this
computation is relatively straightforward, giving a geometric interpretation of these local
contributions is the interesting step.

The main results in the present article revolve around giving geometric interpretations
of the local contributions in the context of the circles of Apollonius. These geometric
interpretations will reveal a paradigm not present in enumerative geometry over closed
fields: the problem of Apollonius is globally a special case of Bézout’s theorem, but these
enumerative problems are distinct from the local perspective.

3. Moduli spaces of circles

We begin with a discussion of circles in algebraic geometry, following [EH16, Section
2.3]. A conic in the projective plane P2

k is given by

V(p0x
2 + p1xy + p2xz + p3y

2 + p4yz + p5z
2).

The moduli scheme of plane conics is thus isomorphic P5
k. A circle should be a conic

of the form (x − az)2 + (y − bz)2 − r2z2 = 0 for some a, b, r2 ∈ k. Expanding this out,
we have x2 + y2 − 2axz − 2byz + (a2 + b2 − r2)z2 = 0. This leads us to the following
definition.



6 STEPHEN MCKEAN

Definition 3.1. A circle is a conic of the form
V(p0(x2 + y2) + z(p1x+ p2y + p3z)).

LetM◦ be the moduli space of circles in P2
k. Given p = [p0 : p1 : p2 : p3] ∈ P3

k, let

C(p) = V(p0(x2 + y2) + z(p1x+ p2y + p3z)) ∈M◦.

If p0 = 0, we say that C([0 : p1 : p2 : p3]) is a degenerate circle.

The definition of C gives us an explicit isomorphism P3
k
∼=M◦.

Proposition 3.2. Regarded as a map, C : P3
k →M◦ is an isomorphism.

Proof. Note that C(p) does not depend on the choice of representative of p, so C : P3
k →

M◦ is well-defined. The (well-defined) inverse morphism C−1 : M◦ → P3
k is given by

C−1V(p0(x2 + y2) + z(p1x + p2y + p3z)) = [p0 : p1 : p2 : p3]. One can readily check that
C ◦ C−1 = idP3

k
and C−1 ◦ C = idM◦ . �

Remark 3.3. If C(p) is a non-degenerate circle, then we can solve for the center and
radius squared of C(p) in terms of p. Since p0 6= 0, we have

C(p) = V(p0x
2 + p0y

2 + p1xz + p2yz + p3z
2)

= V((x+ p1
2p0
z)2 + (y + p2

2p0
z)2 + (p3

p0
− p21

4p20
− p22

4p20
)z2),

which is a circle of radius squared r2 := −p3
p0

+
p21
4p20

+
p22
4p20

with center [a:b:1] := [− p1
2p0

:− p2
2p0

:1].
We will frequently write

p1
p0

= −2a,
p2
p0

= −2b,

p3
p0

= a2 + b2 − r2.

Remark 3.4. When considering the set of circles tangent to a given trio of circles
C1, C2, C3, we will always assume that the centers of C1, C2, C3 are not collinear. This
is a generic condition, because there is a unique line through any pair of points.

Definition 3.5. The residue field or field of definition of a circle C(p) ∈ M◦ is the
residue field k(p) of the point p ∈ P3

k. If C(p) is non-degenerate, then k(p)/k is the
minimal field extension such that a, b, r2 ∈ k(p). Note in particular that r need not be
an element of k(p).

3.1. The cone of tangent circles to a given circle. Given a non-degenerate circle
C(p) ∈ M◦, we would like to describe the space Q(p) ⊂ M◦ of circles tangent to C(p).
By [EH16, Section 2.3.2], Q(p) is a quadric cone inM◦ with cone point C(p). We now
describe a directrix for Q(p), which allows us to explicitly solve for Q(p) in terms of p.

Proposition 3.6. Let C(p) be a non-degenerate circle with radius squared r2. Any circle
of radius squared (2r)2 with center on C(p) is tangent to C(p). (See Figure 2.)
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Proof. Let [a : b : 1] be the center of C(p). If [x0 : y0 : 1] lies on the circle C(p) (so that
(x0− a)2 + (y0− b)2− r2 = 0), then C(p) is tangent to S := V((x− x0z)2 + (y− y0z)2−
(2r)2z2) at q := [2a−x0 : 2b− y0 : 1]. To verify that q ∈ C(p) and q ∈ S, we simply check

(2a− x0 − a)2 + (2b− y0 − b)2 − r2 = (2a− 2x0)2 + (2b− 2y0)2 − (4r)2 = 0.

To verify that C(p) and S are tangent at q, we compute the tangent spaces at q using
TqV(f) = V(∂f

∂x
|q · x+ ∂f

∂y
|q · y + ∂f

∂z
|q · z). Thus

TqC(p) = V(2(a− x0) · x+ 2(b− y0) · y − 2(a2 + b2 + r2 − ax0 − by0) · z),

TqS = V(4(a− x0) · x+ 4(b− y0) · y − 4(2r2 − x2
0 − y2

0 + ax0 + by0) · z).

Substituting 2r2 = r2 + (x0− a)2 + (y0− b)2 in the defining equation for TqS shows that
TqC(p) = TqS as lines in P2

k. �

The family of circles of radius squared (2r)2 with center on C(p) will constitute our
directrix for Q(p).

Proposition 3.7. Let C(p) be a non-degenerate circle with center [a : b : 1] and radius
squared r2. The family of circles of radius squared (2r)2 with center on C(p) is the circle

D := CV
(
c0((a2 + b2 + 3r2)c0 + ac1 + bc2 + c3),(3.1)

c2
1 + c2

2 + 4c0((a2 + b2 − r2)c0 + ac1 + bc2)
)
.

Proof. We obtain the defining equations for the family of circles of radius (2r)2 with
center on C(p) by varying [x0 : y0 : 1] ∈ C(p). Parametrically, we have C(p) = {[a +

r 1−t2
1+t2

: b + r 2t
1+t2

: 1] : t ∈ P1}. Let Et be the circle of radius squared (2r)2 with center
[a+ r 1−t2

1+t2
: b+ r 2t

1+t2
: 1]. Then

Et = C([1 :−2(a+ r 1−t2
1+t2

) :−2(b+ r 2t
1+t2

) : (a+ r 1−t2
1+t2

)2 + (b+ r 2t
1+t2

)2 − 4r2]).

Let [c0 : c1 : c2 : c3] be coordinates on P3
k. We then have the implicit description⋃

t∈P1 Et = CV
(
c2

1 + c2
2 − 4c0c3 − 16r2c2

0,

(c1 + 2ac0)2 + (c2 + 2bc0)2 − 4r2c2
0

)
= CV

(
c2

1 + c2
2 − 4c0c3 − 16r2c2

0,

c2
1 + c2

2 + 4c0((a2 + b2 − r2)c0 + ac1 + bc2)
)
.

Substituting c2
1 + c2

2 = −4c0((a2 + b2 − r2)c0 + ac1 + bc2), we find that
⋃
t∈P1 Et is given

by Equation 3.1. �

Using the vertex p and directrix from Equation 3.1, we now describe the cone Q(p).

Lemma 3.8. Let p = [1 : p1 : p2 : p3] ∈ P3
k. Let [a : b : 1] and r2 be the center and radius

squared, respectively, of C(p). Then

Q(p) = CV
(
(aX + bY + Z)2 − r2(X2 + Y 2)

)
,

where X = c1 − p1c0, Y = c2 − p2c0, and Z = c3 − p3c0.
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q

(a, b)
(x0, y0) S

C(p)

Figure 2. Circle tangent to C(p)

Proof. A cone in P3
k with vertex [1 : 0 : 0 : 0] is given by the vanishing of A1c

2
1 + A2c

2
2 +

A3c
2
3 +A4c1c3 +A5c2c3 +A6c1c2 for some A1, . . . , A6. In order to translate the vertex to

[1 : p1 : p2 : p3], we replace c1, c2, and c3 with X, Y , and Z, respectively. Next, we use the
directrix for Q(p) from Proposition 3.7 to solve for A1, . . . , A6. We will work in the open
affine {c0 6= 0} ⊂ P3

k, after which we will homogenize to obtain the desired equation for
Q(p).

On {c0 6= 0}, Equation 3.1 is defined by a circle on the hyperplane V((a2 + b2 + 3r2)c0 +
ac1 +bc2 +c3). This hyperplane allows us to set Z|D = −(a2 +b2 +3r2 +p3)c0−ac1−bc2.
Remark 3.3 implies that p1 = −2a, p2 = −2b, and p3 = a2 + b2 − r2, so

Z|D = −2(a2 + b2 + r2)c0 − ac1 − bc2

= −a(c1 + 2ac0)− b(c2 + 2bc0)− 2r2c0

= −aX − bY − 2r2c0.

We conclude by expanding A1X
2 + A2Y

2 + A3Z|2D + A4XZ|D + A5Y Z|D + A6XY and
substituting X = c1 + 2ac0 and Y = c2 + 2bc0. Comparing to the coefficients of the
directrix equation

c2
1 + c2

2 + 4c0((a2 + b2 − r2)c0 + ac1 + bc2)

allows us to solve for A1, . . . , A6. We include some Sage code in Appendix A to perform
the algebraic manipulations for us. �

Transversality is a generic condition, so a general choice of circles C(p1), C(p2), C(p3)
will result in the cones Q(p1), Q(p2), Q(p3) meeting transversely. In fact, we can even
characterize when these cones meet transversely in terms of our choice of circles.

Proposition 3.9. The triple of cones Q(p1), Q(p2), Q(p3) meet transversely if and only
if no two circles among C(p1), C(p2), C(p3) are tangent.

Proof. By modifying the details of [EH16, Lemma 8.5] to the case of circles, one can
show that if a circle C(q) has a point xi of simple tangency with C(pi), then the tangent
plane TqQ(pi) is the plane Hi ⊂ P3

k of circles through xi. Three 2-planes in P3
k meet

transversely at q if and only if their intersection consists of a single point. That is,
Q(p1), Q(p2), Q(p3) meet transversely if and only if

⋂
iHi consists of a single point.
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SinceM◦ ∼= P3
k, there are finitely many circles through any three points in P2

k. In fact,
there is a unique circle through any three points, as this coincides with the intersection
of three 2-planes. (Note that if our three points are colinear, then their shared line is
a circle of infinite radius.) In particular,

⋂
iHi consists of a single point if and only if

no circle can be tangent to two of C(p1), C(p2), C(p3) at a single point. We conclude by
remarking that a circle can be tangent to two of C(p1), C(p2), C(p3) at a single point if
and only if two of these circles are tangent. �

3.2. The plane of circles through a point. Given a point q = [a:b:1] ∈ P2
k away from

the line at infinity, we would like to describe the space V (q) ⊂M◦ of circles through q.
In fact, any point in P2

k determines an element of V (q), so V (q) is a hyperplane inM◦.

Lemma 3.10. Let q = [a : b : 1] ∈ P2
k. Then

V (q) = CV((a2 + b2)c0 + ac1 + bc2 + c3).

Proof. The radius squared of any circle through q is determined by its center. The circle
through q with center [A :B : 1] and radius squared r2 satisfies (a−A)2 + (b−B)2 = r2,
so this circle is given by

C([1 :−2A :−2B : A2 +B2 − r2])

= C([1 :−2A :−2B : A2 +B2 − (a− A)2 − (b−B)2])

= C([1 :−2A :−2B : 2Aa+ 2Bb− a2 − b2]).

The space of all such circles is defined implicitly by CV((a2 + b2)c0 + ac1 + bc2 + c3). �

Remark 3.11. A point [a :b : 1] in P2
k can be regarded as a circle with center [a :b : 1] and

radius squared 0. Under this perspective, the cone Q([1 :−2a :−2b :a2 + b2]) degenerates
to the double plane CV((aX + bY + Z)2), which is the plane V ([a : b : 1]) doubled.

4. Euler classes and relative orientability

In this section, we compute the fixed count of circles of Apollonius via the Euler class.
There are several variants to the circles of Apollonius, because there are two ways in
which a circle in P2

k can differ from the non-degenerate circles we have considered thus
far. First, a degenerate circle (i.e. a circle of the form C([0 : p1 : p2 : p3])) is a union of
the line V(z) at infinity with another line in P2

k. Second, a non-degenerate circle with
radius squared 0 is a point. One can thus ask how many circles are tangent to a given
set of three objects, where each object may be a circle, line, or point. For simplicity, we
will not consider any cases including lines (i.e. degenerate circles).

Each variant of the circles of Apollonius corresponds to studying the intersections of
three hypersurfaces, each of the form Q(p) or V (p), in P3

k. The defining polynomials for
Q(p) and V (p) described in Lemmata 3.8 and 3.10 will be used to determine a section
σ : P3

k → O(d1) ⊕ O(d2) ⊕ O(d3), where each di = 1 or 2. Each of these situations is
a special case of Bézout’s theorem [McK21]. In this section, we will discuss the Euler
class e(O(d1) ⊕ O(d2) ⊕ O(d3)) for each of these cases. In Section 6, we will compute
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the local index indq σ [KW21, Definition 30] of our section at any tangent circle C(q).
This local index will give a new invariant on the circles of Apollonius.

4.1. CCC. Suppose we are given three general circles C(p1), C(p2), C(p3) ⊂ P2
k. The set

of circles tangent to these three circles are given by the intersection Q(p1)∩Q(p2)∩Q(p3).
That is, we are intersecting three degree 2 hypersurfaces in P3

k. This is a special case
of Bézout’s theorem, with the defining equations of Q(p1), Q(p2), Q(p3) determining a
section of O(2)⊕3 → P3

k.

Proposition 4.1. The bundle O(2)⊕3 → P3
k is relatively orientable with Euler class 4H.

Proof. The relative orientability is given by [McK21, Proposition 3.2], and the Euler
class is computed in [McK21, Theorem 4.4]. �

4.2. CCP. Suppose we are given two general circles C(p1), C(p2) ⊂ P2
k and a point

p3 ∈ P2
k. If we consider p3 as a circle of radius squared 0, then we can again use

Proposition 4.1 to check relative orientability and compute the Euler class. However,
the local indices in this context fail to be interesting.

Proposition 4.2. Suppose C(q1) and C(q2) are non-degenerate circles with non-zero
radius squared, and suppose C(q3) is a non-degenerate circle with radius squared 0. Sup-
pose Q(qi)red intersect transversely at a point q with k(q)/k a separable extension. Then
indq σ = Trk(q)/kH.

Proof. By [BBM+21, Theorem 1.3], we may assume that q is k-rational. Since C(q1)
and C(q2) are non-degenerate with non-zero radius squared, Q(q1) and Q(q2) are re-
duced. As discussed in Remark 3.11, Q(q3) is a double plane. By the transversality
assumption on Q(qi)red, it follows that the intersection multiplicity of the Q(qi) at q is
2. By [McK21, Proposition 5.2], it follows that rank(indq σ) = 2, so [QSW21, Theorem
2] implies indq σ = H. �

The circles of Apollonius for two circles and a point only become interesting when we treat
p3 as a genuine point (rather than as a circle of radius squared 0). Circles tangent to C(p1)
and C(p2) and through p3 correspond to the intersection locusQ(p1)∩Q(p2)∩V (p3). This
is Bézout’s theorem for the bundle O(2)⊕2⊕O(1)→ P3

k. However, [McK21, Proposition
3.2] states that this bundle is not relatively orientable. One can relatively orient the
bundle O(2)⊕2 ⊕ O(1) relative to the divisor of degenerate circles {c0 = 0} ⊂ P3

k (see
[McK21, Section 3.2]), but the Euler class need not be independent of our choice of
section. Nevertheless, we will still discuss the local indices for the cirlce-circle-point
problem in Section 6.

4.3. CPP. Suppose we are given a circle C(p1) ⊂ P2
k and two general points p2, p3 ∈

P2
k. If we consider p2 and p3 as circles of radius squared 0, then we can again use

Proposition 4.1 to check relative orientability and compute the Euler class. However,
the local indices in this context are again just hyperbolic forms.
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Proposition 4.3. Suppose C(q1) is a non-degenerate circle with non-zero radius squared,
and suppose C(q2) and C(q3) are non-degenerate circles with radius squared 0. Suppose
Q(qi)red intersect transversely at a point q with k(q)/k a separable extension. Then
indq σ = Trk(q)/k 2H.

Proof. By [BBM+21, Theorem 1.3], we may assume that q is k-rational. Since C(q1)
is non-degenerate with non-zero radius squared, Q(q1) is reduced. As discussed in Re-
mark 3.11, Q(q2) and Q(q3) are double planes. By the transversality assumption on
Q(qi)red, it follows that the intersection multiplicity of the Q(qi) at q is 4. By [McK21,
Proposition 5.2], it follows that rank(indq σ) = 4.

Since q is k-rational, we may change coordinates such that q = [1 : 0 : 0 : 0], the double
plane Q(q2) is defined by V(αc2

1) for some α ∈ k×, and the double plane Q(q3) is defined
by V((βc1 +γc2)2) for some β ∈ k and γ ∈ k×. The cone Q(q1) is defined by V(F ), where
F ∈ k[c0, . . . , c3] is a degree 2 homogeneous polynomial satisfying F (1, 0, 0, 0) = 0. Let
f := 1

c20
F . Using [KW19], we calculate indq σ by computing the EKL form on the local

algebra

A :=
k[c1, c2, c3](c1,c2,c3)

(f, αc2
1, (βc1 + γc2)2)

.

The rank of indq σ is equal to dimk A, so any four k-linearly independent elements of A
will form a k-basis. Since α and γ are non-zero, it follows that {1, c1, βc1 + γc2, c1c2} is
a k-basis of A. Let E ∈ A be the distinguished socle element [SS75, (4.7) Korollar], and
let φ : A→ k be any k-linear form satisfying φ(E) = 1. Since c2

1 = (βc1 + γc2)2 = 0 and

c1c2(βc1 + γc2) = γc1c
2
2

= γ−1c1(−β2c2
1 − 2βγc1c2)

= 0

in A, the bilinear form Φ : A × A → k given by Φ(a, b) = φ(ab) has the following
presentation with respect to the basis {1, c1, βc1 + γc2, c1c2}.

1 c1 βc1 + γc2 c1c2

1 ∗ ∗ ∗ φ(c1c2)
c1 ∗ 0 γ · φ(c1c2) 0

βc1 + γc2 ∗ γ · φ(c1c2) 0 0
c1c2 φ(c1c2) 0 0 0

The bilinear form Φ is non-degenerate by [KW19, Lemma 6], so Φ = 2H in GW(k). �

We will thus treat p2 and p3 as genuine points (rather than as circles of radius squared
0). Circles tangent to C(p1) and through p2, p3 correspond to the intersection locus
Q(p1) ∩ V (p2) ∩ V (p3). This is Bézout’s theorem for the bundle O(2)⊕O(1)⊕2 → P3

k.

Proposition 4.4. The bundle O(2) ⊕ O(1)⊕2 → P3
k is relatively orientable with Euler

class H.
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Proof. The relative orientability and Euler class computation can be found in [McK21,
Proposition 3.2 and Theorem 4.4]. �

4.4. PPP. Finally, suppose we are given three general points p1, p2, p3 ∈ P2
k. If we

consider these points as circles of radius squared 0, then Proposition 4.1 again gives us
relative orientability and computes the relevant Euler class. However, the intersection
of three general double planes in P3

k will consist of a single point, so the local index will
be equal to the Euler class:

indq σ = e(O(2)⊕3) = 4H.
As in the previous cases involving points instead of circles, we will treat p1, p2, p3 as
genuine points. The unique circle through p1, p2, p3 corresponds to the intersection
V (p1)∩V (p2)∩V (p3). This is Bézout’s theorem for the bundle O(1)⊕3 → P3

k. As for the
circle-circle-point problem, this bundle is not relatively orientable by [McK21, Proposi-
tion 3.2]. One can relatively orient O(1)⊕3 relative to the divisor of degenerate circles
{c0 = 0} ⊂ P3

k, but the Euler class is equal to the local index and will depend on the
choice of section.

5. Local contributions for general enumerative problems

Results in enumerative geometry often consist of equations relating a fixed count of
objects to a sum of local contributions that depend on the individual objects being
counted:

fixed count =
∑

objects

local contribution.(5.1)

For example, in the classical version of the circles of Apollonius, the fixed count is 8,
and each tangent circle gives a local contribution of 1. In A1-enumerative geometry,
both the fixed count and local contributions are GW(k)-valued rather than integer-
valued. In many cases, fixed counts can be computed using a motivic version of the Euler
class [Lev20,KW21,BW21]. Local contributions are computed as a local index, which
admits a convenient formula in terms of commutative algebra [KW19,BBM+21,BMP21].

In order for Equation 5.1 to be an enumerative geometric equation, we need to give
geometric descriptions of the local contributions. Giving a meaningful geometric inter-
pretation of the local index, which is a priori an algebraic expression, poses one of the
main difficulties in A1-enumerative geometry.

Question 5.1 (Geometricity). Are local indices always geometric? Can enumerative
problems be classified by the “geometric taxon” of their local indices?

In a sense to be described in Section 5.1, Bézout’s theorem gives a universal geometric
interpretation of local contributions. However, this perspective fails to give a satisfactory
answer to Question 5.1 — Bézout’s theorem gives a geometric interpretation is in terms
of the moduli space of the geometric objects in question, rather than in terms of the
intrinsic geometry of the objects themselves. We will clarify this concern in Section 6
with the circles of Apollonius as a case study. While the classical statement of the
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circles of Apollonius can be viewed as a corollary of Bézout’s theorem, the geometric
interpretation given in Lemma 6.3 shows that the A1-enumerative situation is more
subtle.

Remark 5.2. In light of the previous paragraph, we refine Question 5.1 to ask whether
local indices are “intrinsically” geometric, as demonstrated in the following example.

Example 5.3. The second part of Question 5.1 asks for a taxonomy of enumerative
problems in terms of the geometric interpretations of their local indices. We propose
three potential taxa to give an indication of what this might look like. See Appendix C
for further discussion on how such taxa might fit together into a phylogenetic tree of
enriched enumerative problems.

(i) Segre involutions play a prominent role in Kass–Wickelgren’s enriched count of lines
on cubic surfaces [KW21] and Pauli’s count of lines on quintic threefolds [Pau22].
The Segre involution associated to a line L on a cubic surface X swaps points
p, q ∈ L such that TpX = TqX. Kass and Wickelgren show that the local index
for lines on cubic surfaces is given by the degree of the Segre involution. The
description of Segre involutions associated to lines on quintic threefolds is a little
more complicated, but it again relates to swapping points along a line whose tangent
spaces coincide. Pauli shows that the local index for lines on quintic threefolds is
given by the degree of a product of three Segre involutions. In general, one might
hope that the local index for counting lines on a degree 2n− 3 hypersurface in Pn
can be described in terms of Segre involutions.

(ii) There are 2 lines meeting 4 lines in P3, and in general a finite number of lines
meeting 2n − 2 hyperplanes of dimension n − 2 in Pn. Srinivasan and Wickelgren
give an A1-enumerative account of this story when n is odd [SW21]. For n = 3,
the local index is a difference of cross-ratios associated to the geometry of the
solution lines L,L′, the given lines L1, L2, L3, L4, their various intersections, and
the various planes spanned by pairs of intersecting lines. For larger n, Srinivasan
and Wickelgren geometrically interpret the local index by a determinantal formula
that again depends on the various intersection points and hyperplanes spanned by
pairs of intersecting hyperplanes. This (more complicated) interpretation recovers
the difference of cross-ratios when n = 3, so this family of enumerative problems
share a common geometric local index.

(iii) In [DGGM21], the authors give an enriched count of conics meeting 8 lines in P3.
Given a conic C meeting lines L1, . . . , L8, the local index is geometrically described
in terms of the intersection points C ∩ Li and the slopes of each Li relative to to
the tangent lines TC∩Li

C. The local index comes from an explicit section of the
bundle O(1)⊕8 → PSym2(S∨), where S → G(2, 3) is the tautological subbundle on
the Grassmannian of 2-planes in P3.

In general, there are a finite number of degree n plane curves meeting f(n) :=(
n+2
n

)
+ 2 lines in P3. The bundle O(1)⊕f(n) → PSymn(S∨) is relatively orientable

if and only if
(
n+2
n

)
is even (see [DGGM21, Lemma 3.1]), which happens precisely
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when n is equivalent to 2 or 3 mod 4. In any case, we again get an explicit
section whose associated local index can be described geometrically in terms of the
intersection points C ∩ Li and the slopes of Li relative to TC∩Li

C (where C is now
a plane curve of degree n).

From this perspective, the enumerative problems of counting plane curves of a given
degree meeting lines in P3 belong to the same geometric taxon. An interesting
question is whether the problems of counting Pm-curves of a given degree meeting
lines in Pn (with m ≤ n) also belong to this geometric taxon.

5.1. Intersection volume as a universal local contribution. In classical enumera-
tive geometry, many theorems only become truly enumerative when objects are counted
with multiplicity. Bézout’s theorem is the prototypical example of this phenomenon:
unless intersections are counted with multiplicity, the product of degrees merely gives
an upper bound to the number of intersections. In this way, intersection multiplicity
is a universal local contribution for many classical enumerative problems. Similarly,
Bézout’s theorem gives a universal geometric interpretation of local contributions in
A1-enumerative geometry. We will first describe this geometric interpretation under
a transversality assumption. We will then use Pauli’s enrichment of the dynamic de-
gree [Pau22,PW21] to reduce to the transverse case.

Definition 5.4. Let f1, . . . , fn ∈ k[x1, . . . , xn] with corresponding hypersurfaces Xi :=
V(fi) ⊆ An

k . Assume that p ∈
⋂
iXi is an isolated intersection point with intersection

multiplicity ip(X1, . . . , Xn) = [k(p) : k] (that is, Xi intersect transversely at p by [McK21,
Proposition 5.4]). The intersection volume Vol(p) ∈ k(p) of f1, . . . , fn at p is the volume
of the parallelepiped spanned by the gradient vectors ∇fi(p). In other terms,

Vol(p) = det(∇f1(p) | . . . | ∇fn(p))

= Jac(f1, . . . , fn)(p).

In order to compute the intersection volume for a section σ : X → V of a relatively
oriented vector bundle, we need Nisnevich coordinates and compatible local trivializa-
tions to express σ as an endomorphism of affine space. This intersection volume will
not depend on our choices of such data [KW21, Corollary 31], but we need to show
that such data are guaranteed to exist. The existence of Nisnevich coordinates is given
by [KW21, Lemma 19]. We now show that compatible local trivializations also exist.

Proposition 5.5. Let X be a smooth k-scheme of dimension n. Let V → X be a
relatively orientable vector bundle of rank n, and let ρ : detV ⊗ ωX

∼=−→ L⊗2 be a relative
orientation of V → X. Given Nisnevich coordinates ϕ : U → An

k on an open subscheme
U ⊆ X, there exists a local trivialization ψ : V |U → An

k × U → An
k that is compatible

with (ϕ,U) and (ρ, L).

Proof. The Nisnevich coordinates ϕ = (ϕ1, . . . , ϕn) on U determine a local trivialization
dϕ := (dϕ1, . . . , dϕn) on the cotangent bundle T ∗X|U , which in turn determines the
distinguished basis element det dϕ := dϕ1 ∧ · · · ∧ dϕn of ωX |U := detT ∗X|U (considered
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as a rank one OX(U)-module). Let ψ = (ψ1, . . . , ψn) : V |U → An
k × U → An

k be a local
trivialization. This determines the distinguished basis element detψ := ψ1 ∧ · · · ∧ ψn of
detV |U (considered as a rank one OX(U)-module).

If ρ(detψ ⊗ det dϕ) = ` ⊗ ` for some ` ∈ L|U , then we are done. Otherwise, note that
L|⊗2

U
∼= L|U ∼= OX(U) and hence ρ(detψ ⊗ det dϕ) ∈ L|⊗2

U
∼= OX(U). Let f ∈ OX(U) be

the image of ρ(detψ⊗ det dφ), and let ψ′ = (fψ1, ψ2, . . . , ψn). Now the image in OX(U)
of ρ(detψ′ ⊗ det dφ) is f 2. Letting ` ∈ L|U be the preimage of f under L|U ∼= OX(U),
we have ρ(detψ′ ⊗ det dϕ) = `⊗ `. �

We can now show that the local index of a section σ : X → V at a simple zero is always
given by an intersection volume.

Proposition 5.6. Let X be a smooth k-scheme of dimension n > 0. Let V → X be a
relatively orientable vector bundle of rank n, and let ρ : detV ⊗ ωX

∼=−→ L⊗2 be a relative
orientation of V → X. Let σ : X → V be a section. If p ∈ σ−1(0) is a simple zero
with separable residue field k(p)/k, then the local index indp σ is equal to the intersection
volume Trk(p)/k〈Vol(p)〉.

Proof. This is essentially proved in [McK21, Lemma 5.5], but we repeat the relevant
details here. Let U ⊂ X be an open neighborhood of p with Nisnevich coordinates
ϕ : U → An

k , which exist by [KW21, Lemma 19]. Let ψ : V |U → An
k ×U → An

k be a local
trivialization of V compatible with the Nisnevich coordinates ϕ and the relative orienta-
tion (ρ, L), which exists by Proposition 5.5. Then there exist f1, . . . , fn ∈ k[x1, . . . , xn]
such that

(f1, . . . , fn) = ψ ◦ σ ◦ ϕ−1 : An
k → An

k .

By [KW21, Corollary 31], the local index indp σ is well-defined and independent of our
choice of Nisnevich coordinates, compatible trivializations, and functions f1, . . . , fn. By
[KW21, Proposition 34] (see also [BBM+21]), we have indp σ = Trk(p)/k indp̃ σk(p), where
p̃ is the k(p)-rational lift of p determined by the extension k → k(p), and σk(p) is the
base change of σ. Since p is a simple zero of σ, we have indp̃ σk(p) = 〈Jac(f1, . . . , fn)(p)〉
by [KW19, Proposition 15], which is equal to 〈Vol(p)〉 by [McK21, Section 5.1]. �

Remark 5.7. An instance of Proposition 5.6 can be seen in Brazelton’s enriched count
of m-planes meeting (n −m)-planes in Pn [Bra22]. One geometric interpretation given
in the article is phrased as a signed or oriented volume in terms of certain vectors
represented in Plücker coordinates. These Plücker coordinates are local coordinates on
the Grassmannian X parameterizing the planes under consideration, and the oriented
volume is the intersection volume of hypersurfaces that are locally determined by a
relevant section of a vector bundle on X.

5.2. Dynamic local A1-degree. Since transversality is a generic condition, we would
like to reduce arbitrary intersections to the case of Proposition 5.6. Using dynamic
intersections, one can relate a special intersection to a generic one [Ful98, Section 11].
The classical dynamic intersection was enriched by Pauli to give a dynamic A1-Euler
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number [Pau22], as well as by Pauli–Wickelgren to give a dynamic A1-Milnor number
[PW21]. In fact, Pauli–Wickelgren’s approach can be repeated almost verbatim to give
a dynamic local A1-degree for any f : An

k → An
k . We recall the details here, with

[PW21, Section 6.3] as the standing reference for Section 5.2. This will culminate in
Theorem 5.19, which is essentially a rephrasing of [PW21, Theorem 5]. We begin with
the classical computation of GW(k[[t]]):

Proposition 5.8. The map 〈r(t)〉 7→ 〈r(0)〉 defines an isomorphism ev0 : GW(k[[t]])
∼=−→

GW(k) with inverse induced by the inclusion map k ↪→ k[[t]].

Proof. This follows from the fact that GW(k[[t]]) is generated by elements of the form
〈r(t)〉 for units r(t) ∈ k[[t]]× (see e.g. [BW21, Lemma B.3]). Any such unit satisfies
r(0) 6= 0, so we may write r(t) =

∑∞
i=0 ait

i = a0(1 +
∑∞

i=1
ai
a0
ti). Since char k 6= 2, there

exists a square root s(t) ∈ k[[t]] of 1 +
∑∞

i=1
ai
a0
ti. In particular, in GW(k[[t]]), we have

〈r(t)〉 = 〈a0s(t)
2〉

= 〈a0〉 = 〈r(0)〉. �

We now summarize the relationships between GW(k), GW(k[[t]]), and GW(k((t))). Any
element of k((t)) is either of the form u or ut, where u is a unit under the (t)-adic
valuation. The second residue homomorphism ∂t : GW(k((t))) → W(k) is defined by
∂t〈ut〉 = 〈ū〉 and ∂t〈u〉 = 0, where ū ∈ k is the residue of u in k((t))/(t). More generally,
the second residue homomorphism is defined on Milnor–Witt K-groups

∂t : KMW
n (k((t)))→ KMW

n−1(k),

with KMW
n (k[[t]]) := ker ∂t [Mor12, p. 58]. Setting n = 0 recovers the short exact sequence

0→ GW(k[[t]])→ GW(k((t)))
∂t−→W(k)→ 0

of abelian groups. Denote the inclusion of ker ∂t by ı : GW(k[[t]]) → GW(k((t))). Let
 : GW(k) ↪→ GW(k((t))) be inclusion into the first factor under Springer’s theorem
[Lam05, Chapter VI, Theorem 1.4]. Together with ev0 : GW(k[[t]]) → GW(k), these
maps form a commutative triangle.

Proposition 5.9. The following diagram commutes.

GW(k[[t]]) GW(k((t)))

GW(k)

ı

ev0 ∼= 

Proof. The composite ı ◦ ev−1
0 : GW(k) ↪→ GW(k((t))) is the injection induced by the

inclusion k ↪→ k((t)) defined by a 7→ a [Lam05, p. 146], which is precisely the inclusion
. �
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Given a map An
k → An

k , we will build a deformation (that is, a map over k[[t]]) whose
local degree at a special fiber is our local degree valued in GW(k). The general fiber of
this map will have local degree valued in GW(k((t))). Proposition 5.9 will enable us to
relate these two local degrees and exploit the genericity of transverse intersections.

Let f1, . . . , fn ∈ k[x1, . . . , xn]. Given g1, . . . , gn ∈ k[[t]][x1, . . . , xn], let

X := V(f1 + tg1, . . . , fn + tgn) ⊆ An
k[[t]].

Notation 5.10. Given a scheme Y → Spec k[[t]], denote its special fiber by Y0 :=
Spec k ×Spec k[[t]] Y and its generic fiber by Yt := Spec k((t))×Spec k[[t]] Y .

Note that V(f1, . . . , fn) = X0. Since k[[t]] is a local ring, [Sta18, Lemma 04GG (12)]
implies that X = Xfin qX≥1, where Xfin → Spec k[[t]] is finite and (X≥1)0 is a union of
irreducible k-schemes of dimension at least 1.

Notation 5.11. Given a closed point p ∈ X0, let Xp be the union of all irreducible
components of X containing p.

The scheme Xp is a finite collection of points, namely p and the points that p splits into
in the generic fiber Xt. To see this, we first show that Xp → Spec k[[t]] is finite.

Proposition 5.12. If p ∈ X0 is isolated, then Xp → Spec k[[t]] is finite.

Proof. Since p is isolated, the local ring OX0,p is finite as a k-module. In particular, the
special fiber of any irreducible component of X containing p must be finite over k, so
the decomposition X = Xfin qX≥1 implies that Xp is a closed subscheme of Xfin. The
finiteness of Xp → Spec k[[t]] now follows from the finiteness of Xfin → Spec k[[t]]. �

We are now ready to show that p is the only point in the special fiber (Xp)0. Since
Y = Y0qYt (set-theoretically) for any k[[t]]-scheme Y , it will follow thatXp−{p} = (Xp)t.
By construction, (Xp)t consists of the points that map to p under Xt → X0, or in other
words, the points that p ∈ X0 splits into in the generic fiber Xt.

Proposition 5.13. If p ∈ X0 is isolated, then p is the only point of (Xp)0.

Proof. Let xt ∈ (Xp)t be a point. The residue field κ(xt) of xt is a finite extension of
k((t)). Letting R be the integral closure of k[[t]] in κ(xt), we get a commutative diagram

(5.2)
Specκ(xt) Xp

SpecR Spec k[[t]].

The map SpecR→ Spec k[[t]] is finite by [Sta18, Lemma 032Q] and [Sta18, Lemma 032L]
if char k = 0 or [Sta18, Lemma 032N] if char k 6= 0. Since Xp → Spec k[[t]] is finite, it is
also a proper morphism, so the valuative criterion for properness [Sta18, Lemma 0A40]

https://stacks.math.columbia.edu/tag/04GG
https://stacks.math.columbia.edu/tag/032Q
https://stacks.math.columbia.edu/tag/032L
https://stacks.math.columbia.edu/tag/032N
https://stacks.math.columbia.edu/tag/0A40
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implies that there is a unique morphism SpecR→ Xp that commutes with Diagram 5.2.
Moreover, the image of SpecR (which we denote by x) is a component of Xp, since
having a finite mapXp → Spec k[[t]] implies that dimXp ≤ dim Spec k[[t]] = dimR [Sta18,
Lemma 0ECG]. Thus p ∈ x by definition of Xp.

By [BGR84, Section 3.2.4, Theorem 2], R is a complete discrete valuation ring. Since
k[[t]] → R is finite, dimR = 1. The Cohen structure theorem (see e.g. [Sta18, Section
0323]) thus implies that R ∼= L[[u]] for some finite extension L/k and some parameter
u. In particular, the special fiber (SpecR)0 contains a unique point, so the special fiber
x0 ∈ (Xp)0 consists of a unique point. As p ∈ x, it follows that x0 = p, so the special
fiber of any component of Xp consists solely of the point p. �

Our next goal is to show that OXp(Xp) is a free k[[t]]-module and that (f1 + tg1, . . . , fn +

tgn) is regular sequence. This will allow us to define the local degree degA1

p (f1 +
tg1, . . . , fn + tgn) ∈ GW(k[[t]]) as the isomorphism class of the Scheja–Storch bilinear
form OXp(Xp)×OXp(Xp)→ k[[t]] [SS75, §3].

Proposition 5.14. If p ∈ X0 is isolated, then OXp(Xp) is a local ring.

Proof. In the proof of Proposition 5.13, we saw that (as a set of points) Xp consists
of a set of maximal points xt ∈ (Xp)t and a unique closed point p ∈ (Xp)0. Since
Xp → Spec k[[t]] is finite, it is also quasi-compact. In particular, the topological space
underlying Xp is quasi-compact by [Sta18, Lemma 01K4]. Now [Che17, Proposition
4] implies that Xp = SpecR for some local ring R. In particular, Xp is affine, so
R ∼= OXp(Xp). �

Proposition 5.15. If p ∈ X0 is isolated, then there exists a k[[t]]-module M such that
(f1 + tg1, . . . , fn + tgn) is a regular sequence in M and OXp(Xp) ∼= M/(f1 + tg1, . . . , fn +
tgn).

Proof. Let m ⊂ k[[t]][x1, . . . , xn] be the maximal ideal corresponding to the point p over
k[[t]] (with t ∈ m), and let m0 = m/(t) = m∩k[x1, . . . , xn] (which corresponds to p over k).
Set R = k[[t]][x1,...,xn]

(f1+tg1,...,fn+tgn)
. Let min(R) be the set of minimal primes of R (corresponding

to the irreducible components of X), and let min(R)p be the set of minimal primes of
R that are contained in the image of m (corresponding to the irreducible components
of Xp). Finally, let S = R − min(R)p. We claim that OXp(Xp) ∼= S−1R, from which
it will follow that OXp(Xp) ∼= Q−1(k[[t]][x1,...,xn])

(f1+tg1,...,fn+tgn)
for some multiplicatively closed subset

Q ⊂ k[[t]][x1, . . . , xn] (since localization commutes with quotients).

To prove the claim, we first note that S is multiplicatively closed. Indeed, since Xp is
finite over a Noetherian base, Xp is Noetherian. Thus Xp has finitely many components,
so min(R)p is a finite set of primes. Moreover, p ∈ SpecS−1R if and only if p ∈ min(R)p,
so SpecS−1R = Xp.

The assumption that p ∈ X0 is isolated implies that the local ring OX0,p has dimension
0. Note that OX0,p

∼= Q−1(k[[t]][x1,...,xn])
(f1+tg1,...,fn+tgn,t)

. Since M := Q−1(k[[t]][x1, . . . , xn])m is a regular

https://stacks.math.columbia.edu/tag/0ECG
https://stacks.math.columbia.edu/tag/0323
https://stacks.math.columbia.edu/tag/0323
https://stacks.math.columbia.edu/tag/01K4
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local ring (of dimension n+ 1), it is a local Cohen–Macaulay ring. Thus [Sta18, Lemma
02NJ] implies that (f1 + tg1, . . . , fn + tgn, t) is a regular sequence in M . It follows that
(f1 + tg1, . . . , fn + tgn) is also a regular sequence in M . Since S−1R is already local by
Proposition 5.14, we also have OXp(Xp) ∼= S−1R ∼= M/(f1 + tg1, . . . , fn + tgn). �

Proposition 5.16. If p ∈ X0 is isolated, then Xp → Spec k[[t]] is flat.

Proof. Using the notation in the proof of Proposition 5.15, we have that k[[t]] is a regular
local ring of dimension 1, S−1R is Cohen–Macaulay of dimension 1, and S−1R⊗k ∼= OX0,p

has dimension 0. Thus [Mat89, Theorem 23.1 (p. 179)] implies that Xp → Spec k[[t]] is
flat. �

Proposition 5.17. If p ∈ X0 is isolated, then OXp(Xp) is a free k[[t]]-module.

Proof. Since k[[t]] is Noetherian and Xp → Spec k[[t]] is finite, flatness (Proposition 5.16)
implies that OXp(Xp) is a projective k[[t]]-module. Since projective modules are locally
free, OXp(Xp) being local (Proposition 5.14) that OXp(Xp) is a free k[[t]]-module. �

We can now define degA1

p (f1 + tg1, . . . , fn + tgn) ∈ GW(k[[t]]).

Definition 5.18. Let (f1, . . . , fn) : An
k → An

k with isolated zero p. Let g1, . . . , gn be any
elements of k[[t]][x1, . . . , xn] such that

Spec
k[[t]][x1, . . . , xn]

(f1 + tg1, . . . , fn + tgn)
→ Spec k[[t]]

is finite and flat. Let X = V(f1 + t1g1, . . . , fn + tgn). Define degA1

p (f1 + tg1, . . . , fn +
tgn) ∈ GW(k[[t]]) to be the isomorphism class of the Scheja–Storch bilinear pairing
OXp(Xp)×OXp(Xp)→ k[[t]] determined by the regular sequence (f1 + tg1, . . . , fn + tgn).

Putting this all together, we get the following rephrasing of [PW21, Theorem 5]:

Theorem 5.19 (Dynamic local A1-degree). Let (f1, . . . , fn) : An
k → An

k with isolated
zero p. Let g1, . . . , gn be any elements of k[[t]][x1, . . . , xn] such that

Spec
k[[t]][x1, . . . , xn]

(f1 + tg1, . . . , fn + tgn)
→ Spec k[[t]]

is finite and flat. Let X = V(f1 + t1g1, . . . , fn + tgn), and let Xp
t := (Xp)t ⊂ An

k((t)) be the
collection of points that p splits into under the deformation X0 7→ Xt. Then

degA1

p (f1, . . . , fn) = −1|im(ı)

∑
z∈Xp

t

degA1

z (f1 + tg1, . . . , fn + tgn)


as elements of GW(k).

https://stacks.math.columbia.edu/tag/02NJ
https://stacks.math.columbia.edu/tag/02NJ
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Proof. Let f = (f1, . . . , fn) and g = (g1, . . . , gn). By construction, we have ev0(degA1

p (f+

tg)) = degA1

p (f) as elements of GW(k). The map An
k[[t]] → An

k((t)) induced by the inclusion
k[[t]] ↪→ k((t)) sends p ∈ X ⊂ An

k[[t]] to X
p
t ⊂ An

k((t)), so

ı(degA1

p (f + tg)) =
∑
z∈Xp

t

degA1

z (f + tg)

as elements of GW(k((t))). The result now follows from Proposition 5.9. �

Since transversality is a generic condition, Theorem 5.19 implies that we can always
interpret the local index indq σ as a sum of local indices in the transverse setting, even
when q is not a simple zero of σ. By Proposition 5.6, we can always geometrically
interpret the local index as a sum of intersection volumes. For example, Theorem 5.19
allows us to remove the transversality assumption in Theorem 2.1:

Corollary 5.20. Let f = (f1, . . . , fn) : An
k → An

k be a morphism with isolated zero
p. Assume that k(p)/k is separable. Let g1, . . . , gn ∈ k[[t]][x1, . . . , xn] be such that the
hypersurfaces V(fi + tgi) ⊆ Pnk((t)) meet transversely. Let Y = V(f1 + tg1, . . . , fn + tgn)→
Spec k[[t]]. Then

degA1

p (f1, . . . , fn) =
∑

z∈Y p−{p}

Trκ(z)/k((t))〈Vol(z)〉,

where Vol(z) is the intersection volume of f1 + tg1, . . . , fn + tgn at z.

Proof. We first show that κ(z)/k((t)) is separable for all z ∈ Y p − {p}. Let Φ : Y p →
Spec k[[t]] be the structure map, which is finite by Proposition 5.12. By [Sta18, Lemma
02GL (1)], our assumption that k(p)/k is separable implies that p = Spec k(p) is smooth
over k. In particular, Φ is smooth at Φ−1(0) = (Y p)0 = p. By [Sta18, Lemma 01V9],
there exists a non-empty open subset U ⊆ Y p such that p ∈ U and Φ|U is smooth.
But Φ is proper and Y p − U is closed, so Φ(Y p − U) ⊆ Spec k[[t]] is also closed. Any
non-empty closed subset of Spec k[[t]] contains the sole closed point 0. Since p 6∈ Y p−U ,
we have that Φ(Y p − U) is empty and hence Y p = U (as Φ is surjective). It follows
that Φ is smooth above the generic point, so (Y p)t → Spec k((t)) is smooth. This map
also inherits finiteness from Φ, so (Y p)t → Spec k((t)) is smooth of relative dimension 0
and is therefore étale. It now follows from [Sta18, Lemma 02GL (2)] that κ(z)/k((t)) is
separable for all z ∈ (Y p)t = Y p − {p}.

Since we have assumed that V(fi + tgi) meet transversely, [McK21, Section 3] implies
that degA1

z (f1 + tg1, . . . , fn + tgn) = Trκ(z)/k((t))〈Vol(z)〉. The result now follows from
Theorem 5.19. �

We are now ready to prove Theorem 1.5, which states that the intersection volume is a
“universal” geometric interpretation of local indices in A1-enumerative geometry.

https://stacks.math.columbia.edu/tag/02GL
https://stacks.math.columbia.edu/tag/02GL
https://stacks.math.columbia.edu/tag/01V9
https://stacks.math.columbia.edu/tag/02GL
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Spec k[t]

X
p

Figure 3. Losing track of points that split off from p

Spec k[t]

X
p

Spec k[t]

Xp
p

Figure 4. Removing disjoint sheets

Proof of Theorem 1.5. We want to show that the local index indp σ is given by an inter-
section volume of hypersurfaces in X. When p is a simple zero of σ, this is the content
of Proposition 5.6. If p is not a simple zero, then Corollary 5.20 states that indp σ is the
sum of intersection volumes obtained by perturbing σ over k[[t]]. �

5.3. Computing the local degree in families. In essence, the dynamic approach
enables us to compute the local A1-degree at a point by computing a sum of local
A1-degrees over a nearby fiber. Using Harder’s theorem [KW19, Lemma 30], we might
instead try to compute degA1

p (f) by computing a sum of local A1-degrees over an arbitrary
fiber in a family containing p. Since V(f) is zero dimensional, a family X → Spec k[t]
with special fiber X0 = V(f) is a branched cover of the affine line. We want to separate
p, a point of higher intersection multiplicity, into a set of reduced points. We then wish
to express degA1

p (f) as a sum of local A1-degrees over this set of reduced points.

However, if X is ramified somewhere between the special fiber X0 and the fiber over
which we wish to compute the local A1-degree, then we may lose track of the individual
points at which to compute — there can be multiple points in the fiber X0 that belong to
the same connected component of X (see Figure 3). We can avoid this issue by assuming
that X is ramified only at the fiber containing p and removing the unwanted components
of X by localizing to the irreducible components of X that contain p (see Figure 4). In
a sense, this ramification assumption allows us to mimic the dynamic approach over the
non-local base Spec k[t].
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For now, we will not assume that X is branched only at one point. Instead, we will
show how to compute a sum of local degrees via Harder’s theorem after localizing to a
connected component. One can then apply this more general result to the special case
where X is branched at only one point. Before describing the familial local A1-degree
(Theorem 5.22), we need the following analog of Proposition 5.12:

Lemma 5.21. Let ϕ : X → Spec k[t] be a morphism of finite type, where X is affine.
Assume that every irreducible component of X surjects onto Spec k[t] under ϕ, that ϕ is
unramified away from the preimage of a finite locus B ⊂ Spec k[t], and ϕ−1(B) is finite.
Then ϕ is finite and flat.

Proof. We will first show that ϕ is flat. Write X = SpecA for some k[t]-module A.
Since k[t] is a Dedekind domain, it suffices to show that A is torsion-free. Suppose
g ∈ k[t] is a non-zero element that annihilates some a ∈ A. Then for any irreducible
component Y ⊆ X on which a does not vanish, we have ϕ(Y ) ⊆ V(g) ( Spec k[t].
But this contradicts our assumption that each irreducible component of X surjects onto
Spec k[t], so we deduce that ϕ is flat.

Next, we show that ϕ has finite fibers. Since ϕ is affine and finite type, ϕ is quasi-finite
if and only if it has finite fibers [Sta18, Lemma 02NH]; the same is also true for the
restriction of ϕ to ϕ′ : X −ϕ−1(B)→ A1

k −B. The map ϕ′ is unramified by assumption
and is therefore locally quasi-finite by [Sta18, Lemma 02V5]. Since ϕ′ is affine and hence
quasi-compact [Sta18, Lemma 01S7], it follows that ϕ′ is quasi-finite [Sta18, Lemma
01TJ]. Thus ϕ′ has finite fibers. The fibers of ϕ above B are finite by assumption, so ϕ
has finite fibers.

Finally, note that if Z is an irreducible component of X − ϕ−1(B), then each fiber of
Z consists of a single point. Indeed, Z is connected (being irreducible), so if some fiber
of Z consists of more than one point, then Z consists of more than one sheet. But
Z → A1

k − B is unramified, so these sheets must remain disjoint. This contradicts the
assumption that Z is irreducible. Thus Z → A1

k − B is injective, so this map is an
isomorphism. It follows that the closure of Z in X is isomorphic to A1

k, so X is a finite
union of isomorphic copies of Spec k[t]. As a result, X is finite over Spec k[t]. �

Theorem 5.22 (Familial local A1-degree). Let f : An
k → An

k such that each point of
f−1(0) is isolated in the fiber. Let F : An

k[t] → An
k[t] be a morphism such that V(F ) →

Spec k[t] is flat and F |t=0 = f . Assume that V(F ) is unramified away from a finite
set B ⊂ A1

k. Then for any closed point c ∈ A1
k − {0} and any connected component

Y ⊆ V(F ), the perturbation f̃ := F |t=c : An
k → An

k of f has a set of zeros Z ⊆ f̃−1(0)
such that ∑

p∈Y0

degA1

p (f) =
∑
q∈Z

degA1

q (f̃).

Proof. We will construct a pair (Q, β), where Q is a finite locally free k[t]-module and β
is a non-degenerate symmetric bilinear form on Q, such that

https://stacks.math.columbia.edu/tag/02NH
https://stacks.math.columbia.edu/tag/02V5
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(i) the isomorphism class of β|t=0 is
∑

p∈Y0 degA1

p (f), and

(ii) the isomorphism class of β|t=c is
∑

q∈Z degA1

q (f̃).

Once we have constructed (Q, β), the desired result will follow from [KW19, Lemma 30].

Since V(F ) → Spec k[t] is finite type and Spec k[t] is Noetherian, we have that V(F )
is Noetherian as well [Sta18, Lemma 01T6]. In particular, V(F ) has finitely many ir-
reducible components. Let P ⊂ k[t][x1, . . . , xn] denote the (finite) set of prime ideals
corresponding to the irreducible components comprising Y . Then S = k[t][x1, . . . , xn]−P
is multiplicatively closed. Set Q = S−1(k[t][x1,...,xn])

(F1,...,Fn)
. The localization SpecQ is the restric-

tion of the vanishing locus V(F ) to the connected component Y .

The conditions of Lemma 5.21 hold for Y , which implies that Q is a finite k[t]-module.
Since SpecQ → V(F ) is flat by [Sta18, Lemma 00HT (1)] and V(F ) → Spec k[t] is flat
by assumption, [Sta18, Lemma 01U7] implies that Q is a flat k[t]-module. Since k[t] is
Noetherian, Q being a finite k[t]-module is equivalent to Q being a finitely presented
k[t]-module, so [Sta18, Lemma 00NX (1) and (7)] implies that Q is a finite locally free
k[t]-module. (In fact, Q is projective over a PID, so Q is even a free k[t]-module.)

We thus have the desired Q. We define β to be the Scheja–Storch form on Q associated to
the sequence (F1, . . . , Fn). Then Q0 and Qc each have finite k-dimension. This implies
that Q0 and Qc are Artinian rings, each having finitely many maximal ideals. The
maximal ideals of Q0 correspond to the points of Y0 (which are the zeros of f contained
in Y ), while the maximal ideals of Qc are a subset of the zeros of f̃ . Let Z ⊂ An

k be the set
of points corresponding to the maximal ideals of Qc. It follows from e.g. [BMP21, Lemma
4.7 and Theorem 5.1] that β|t=0 is isomorphic to

∑
p∈Y0 degA1

p (f) and β|t=c is isomorphic
to
∑

q∈Z degA1

q (f̃), which gives us (i) and (ii). �

Corollary 5.23 (Familial local A1-degree at one point). Assume the conventions of
Theorem 5.22. Assume moreover that B = {0}. Fix p ∈ f−1(0). Then for any closed
point c ∈ A1

k, the perturbation f̃ := Ft=c of f has a set of zeros Z ⊆ f̃−1(0) such that

degA1

p (f) =
∑
q∈Z

degA1

q (f̃).

Proof. By assumption, V(F )−ϕ−1(B) is a disjoint union of copies of the punctured affine
line. The closure in V(F ) of each irreducible component of V(F )− ϕ−1(B) has a single
point in the fiber above t = 0, so the connected components are in bijection with the
points in the fiber ϕ−1(B). Let Y be the connected component of V(F ) containing p. The
previous discussion implies that Y0 = {p}, so the result follows from Theorem 5.22. �

Remark 5.24. Similar to Theorem 5.22, Kass and Wickelgren have used Harder’s the-
orem to study the A1-degree in families [KW19,KW21]. In their work, they show (and
utilize) that the sum of local A1-degrees over a given fiber is independent of the fiber
chosen. Our approach describes how to remove other elements of the fiber over 0 in order
to compute the local A1-degree at a subset of the fiber by working in families. Under

https://stacks.math.columbia.edu/tag/01T6
https://stacks.math.columbia.edu/tag/00HT
https://stacks.math.columbia.edu/tag/01U7
https://stacks.math.columbia.edu/tag/00NX
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the assumptions of Corollary 5.23, this can be refined to compute the local A1-degree at
a single point.

As with the dynamic approach, Corollary 5.23 allows us to remove the transversality
assumption in Theorem 2.1:

Corollary 5.25. Assume the conventions of Corollary 5.23. Assume moreover that
away from t = 0, each fiber V(F )t is geometrically reduced. Then for any c ∈ k×, the
perturbation f̃ := F |t=c : An

k → An
k of f has a set of zeros Z ⊆ f̃−1(0) such that

degA1

p (f) =
∑
q∈Z

Trk(q)/k〈Vol(q)〉,

where Vol(q) = Jac(f̃)(q).

Proof. By assumption, SpecQc is geometrically reduced, so the components of f̃ meet
transversely at each q ∈ Z. Since F is flat and unramified at t = c, we have that
V(f̃) → Spec k(c) = Spec k is étale [Sta18, Lemma 02GU (2) and (4)]. In particular,
k(q)/k is separable for all q ∈ Z [Sta18, Lemma 02GL (1)]. It follows from [McK21,
Section 5.2] that degA1

q (f̃) = Trk(q)/k〈Vol(q)〉. The desired result now follows directly
from Corollary 5.23. �

In summary, the intersection volume is a universal geometric interpretation of the local
indices in A1-enumerative geometry. However, for most enumerative geometric problems,
this interpretation is unsatisfactory — for the circles of Apollonius, the intersection
volume at a tangent circle C(q) would tell us about the geometry of the cones Q(pi) (or
planes V (pi)), rather than about the geometry of the circles C(pi) (or points pi) and the
tangent circle C(q). Question 5.1 asks for a more intrinsic geometric interpretation of
indq σ.

6. Local contributions for Apollonian circles

We now give a geometric interpretation of indq σ in terms of the geometry of the rele-
vant circles by analyzing the intersection volume. We will assume that the cones Q(pi)
intersect transversely, which happens whenever the circles C(pi) satisfy the criteria of
Proposition 3.9. (For example, the centers of all three circles should not lie on a shared
line.) In Section 7, we will outline a conjectural approach to finding alternative, more
parsimonious descriptions of indq σ.

Given three circles C(pi) (or points pi), the intersection volume Vol(q) at a circle C(q)
is defined in terms of the gradients of the cones Q(pi) (or planes V (pi)) at q. We will
assume that C(pi) and C(q) are non-degenerate circles, so that their c0 coordinate in
P3
k is non-zero. This allows us to work in the affine patch {c0 6= 0} ⊂ P3

k, where the
twisted covering map of [McK21, Proposition 3.8] is simply the standard covering map
{c0 6= 0} → A3

k. The standard coordinates on {c0 6= 0} are ( c1
c0
, c2
c0
, c3
c0

), so the gradient
used to calculate Vol(q) will be ∇ = ( ∂

∂c1
, ∂
∂c2
, ∂
∂c3

).

https://stacks.math.columbia.edu/tag/02GU
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#  —γziC(q)

C(pi)

#  —γτiC(q)

C(pi) #   —τizi

C(q)

C(pi)

Figure 5. Externally tangent circles

Notation 6.1. Let zi := [ai : bi : 1] be the center of C(pi) (or the point pi), and let r2
i be

the radius squared of C(pi) (or 0 for the point pi). Similarly, let γ := [α : β : 1] be the
center of the non-degenerate circle C(q). Let ρ2 be the radius squared of C(q), which is
0 if C(q) is simply the point [α : β : 1]. Let τi := [si : ti : 1] ∈ C(pi) ∩ C(q) be the point
at which C(pi) and C(q) are tangent.

We will use the following vectors in A2
k (see Figure 5):

#  —γzi = (ai − α, bi − β),
#  —γτi = (si − α, ti − β),

#   —τizi = (ai − si, bi − ti).

Finally, define

ui =

{
#   —τizi · #  —γzi C(pi) a circle,
1 pi a point

vi =

{
#   —τizi · #  —γτi C(pi) a circle,
1 pi a point.

Remark 6.2. If k is an ordered field and r2
i , ρ

2 > 0, then we can choose distinguished
radii ri ∈ k(

√
r2
i ) and ρ ∈ k(

√
ρ2) such that ri, ρ > 0. Since the vectors #  —γzi, #  —γτi, and #  —τzi

are all parallel or anti-parallel, the sign of the dot product of any two of these vectors
indicates whether they are parallel or anti-parallel.

In this context, vi detects whether C(pi) and C(q) are externally tangent (as in Figure 5)
or internally tangent (as in Figures 6 and 7). Moreover, if C(pi) and C(q) are internally
tangent, then ui detects whether ρ > ri (as in Figure 6) or ri > ρ (as in Figure 7). In
particular:

• C(pi) and C(q) are externally tangent if and only if ui, vi > 0.

• C(pi) and C(q) are internally tangent with ρ > ri if and only if ui < 0 and vi < 0.

• C(pi) and C(q) are internally tangent with ri > ρ if and only if ui > 0 and vi < 0.
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#  —γziC(q)

C(pi)

#  —γτiC(q)

C(pi)

#   —τizi
C(q)

C(pi)

Figure 6. Internally tangent circles

#  —γziC(pi)

C(q)

#  —γτi
C(pi)

C(q)

#   —τiziC(pi)

C(q)

Figure 7. Internally tangent circles with reversed containment

Lemma 6.3. If C(q) is tangent to the circles C(pi) (or points pi), then the intersection
volume is (up to squares)

Vol(q) =
∑

{i,m,n}={1,2,3}
m<n

(−1)i+1uivmvn((am − α)(bn − β)− (an − α)(bm − β)).

In other words, Vol(q) is a weighted sum of the signed areas of the parallelograms spanned
by #     —γzm and #   —γzn (see Figure 8), where the weights are given in terms of the dot products
ui, vm, and vn.

Proof. If r2
i 6= 0, we have

∇Q(pi) = (2ai(aiX + biY + Z)− 2r2
iX,

2bi(aiX + biY + Z)− 2r2
i Y,

2(aiX + biY + Z)).

Evaluated at q, we have X = 2(ai−α), Y = 2(bi−β), and Z = α2−a2
i +β2−b2

i +r2
i −ρ2.

Thus, evaluated at q, we have

∇Q(pi)|q = (2ai((ai − α)2 + (bi − β)2 + r2
i − ρ2)− 4r2

i (ai − α),

2bi((ai − α)2 + (bi − β)2 + r2
i − ρ2)− 4r2

i (bi − β),

2((ai − α)2 + (bi − β)2 + r2
i − ρ2)).

If pi = [ai : bi : 1] is a point, then ∇V (pi) = (ai, bi, 1) is independent of the intersection
point q. The intersection volume Vol(q) is the determinant of the matrix M with rows
∇Q(pi)|q (or ∇V (pi)). Subtracting α times the third column from the first column of
M and β times the third column from the second column of M , we find that Vol(q) is
the determinant of the matrix with ith row

(2(ai − α)((ai − α)2 + (bi − β)2 − r2
i − ρ2),(6.1)

2(bi − β)((ai − α)2 + (bi − β)2 − r2
i − ρ2),

2((ai − α)2 + (bi − β)2 + r2
i − ρ2))
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#   —γzn
#     —γzm

C(pm)

C(pn)

Figure 8. Parallelogram of tangent circles

if C(pi) is a circle or

(ai − α, bi − β, 1) = (vi(ai − α), vi(bi − β), ui)

if pi is a point. Since [si : ti : 1] ∈ C(pi) ∩ C(q), we have r2
i = (si − ai)2 + (ti − bi)2 and

ρ2 = (si − α)2 + (ti − β)2. If C(pi) is a circle, we may thus substitute for r2
i and ρ2 in

Equation 6.1 to obtain 4(vi(ai − α), vi(bi − β), ui). Ignoring the factor of 4 only changes
Vol(q) up to squares, so

Vol(q) = det

v1(a1 − α) v1(b1 − β) u1

v2(a2 − α) v2(b2 − β) u2

v3(a3 − α) v3(b3 − β) u3


up to squares. �

7. Invariants from dual circles

Classically, the circles of Apollonius can be studied in pairs. One way to pair circles is via
inversion [Dör65, pp. 154–160]. Given three general circles C1, C2, C3 (over R), the rad-
ical circle is the unique circle that intersects each Ci perpendicularly. Inversion through
the radical circle preserves tangency to each Ci and hence determines a permutation
on the set of circles tangent to C1, C2, C3. One can then show that this permutation is
in fact an involution. We say that two circles are inversively dual or conjugate if they
correspond to one another under this involution.

Alternatively, one can degenerate Ci to a point p. Under this degeneration, each tangent
circle will be sent to one of the four circles through p and tangent to the remaining
two circles Cj, Ck. Moreover, the map (induced by degenerating Ci to p) from the set
of circles tangent to C1, C2, C3 to the set of circles through p and tangent to Cj, Ck is
two-to-one, so swapping the elements within each fiber determines an involution on the
circles of Apollonius [Joh60, pp. 117–121]. We say that two circles are degeneratively
dual through Ci if they coincide after degenerating Ci.

Over an ordered field, each of these involutions can be rephrased in terms of external
and internal tangency (see Remark 6.2). Two tangent circles are degeneratively dual
through Ci if they have opposite tangencies with respect to Ci and the same tangencies
with respect to the remaining two circles Cj, Ck (see Figure 9). Two tangent circles
are inversively dual if they have opposite tangencies with respect to C1, C2, C3 (see
Figure 10).
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Figure 9. Degeneratively dual circles

Figure 10. Inversively dual circles

In this section, we will show that each of these involutions exist over any field of charac-
teristic not 2. We will also give a generalization of external and internal tangency over
such fields. Finally, we will describe a conjectural approach for generating new interpre-
tations of indq σ via these involutions. We assume throughout this section that the cones
Q(pi) meet transversely, so that the circles simultaneously tangent to C(p1), C(p2), C(p3)
are geometrically distinct (that is, distinct over k).

7.1. Solving for tangent circles. In order to define inversively and degeneratively dual
circles over an arbitrary field k with char k 6= 2, we would like an algebraic description
of the set of circles of Apollonius. This description was provided by Coaklay [Coa60]
and, independently, Stoll [Sto73]. We will describe these solutions, and we give a code
implementation in [McK22]. We also note that while Coaklay only worked over R,
the solutions are in fact valid over any field in which the quadratic formula holds (i.e.
char k 6= 2).

Let k be a field with char k 6= 2. For 1 ≤ i ≤ 3, let ai, bi, r2
i ∈ k and pi = [1:−2ai:−2bi:a

2
i+

b2
i − r2

i ], so that C(pi) ∈ M◦ is the k-rational circle with center [ai : bi : 1] and radius
squared r2

i . Let s = (s1, s2, s3) ∈ {1,−1}3. We first define

∆ = det

(
a2 − a1 a3 − a1

b2 − b1 b3 − b1

)
= (a1 − a2)(b1 − b3)− (a1 − a3)(b1 − b2)

and Dij = a2
i − a2

j + b2
i − b2

j − (r2
i − r2

j ).

Remark 7.1. Note that ∆ 6= 0 if and only if the the three centers [ai : bi : 1] are not
collinear.
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Next, let ri be a square root of r2
i , and define

A1(s) =
(s1r1 − s2r2)(b1 − b3)− (s1r1 − s3r3)(b1 − b2)

∆
,(7.1)

B1(s) =
(s1r1 − s3r3)(a1 − a2)− (s1r1 − s2r2)(a1 − a3)

∆
,

A2(s) =
(b1 − b3)D12 − (b1 − b2)D13

2∆
,

B2(s) =
(a1 − a2)D13 − (a1 − a3)D12

2∆
,

M(s) = A1(s)s1r1 + A2(s)− a1,

N(s) = B1(s)s1r1 +B2(s)− b1.

Finally, let

fs(x) = (1− A1(s)2 −B1(s)2)(x− s1r1)2(7.2)
− 2(M(s)A1(s) +N(s)B1(s))(x− s1r1)

−M(s)2 −N(s)2.

Remark 7.2. If k is an ordered field, we can specify that ri should be non-negative. In
general, we cannot consistently choose a “preferred” square root of r2

i . However, once we
have picked ri, the other square root −ri will be accounted for by negating si in fs(x).

Theorem 7.3 (Coaklay). The circle C([1 : −2αs : −2βs : α2
s + β2

s − ρ2
s]) is tangent to

C(p1), C(p2), C(p3), where ρs is a root of fs(x) and

αs = A1(s)ρs + A2(s),

βs = B1(s)ρs +B2(s).

Moreover, every circle tangent to C(p1), C(p2), C(p3) is obtained in this manner for some
s ∈ {1,−1}3.

Remark 7.4. The roots of fs and f−s coincide, as do the sets {(αs, βs) : ρs a root of fs}
and {(α−s, β−s) : ρ−s a root of f−s}. In particular, we can recover all circles of Apollonius
with the polynomials f(1,±1,±1).

Remark 7.5. The polynomials fs have two distinct roots unless (i) the discriminant
of fs vanishes, or (ii) 1 − A1(s)2 − B1(s)2 = 0. Case (i) corresponds to having tangent
circles of multiplicity 2 (compare with Proposition 3.9). Case (ii) corresponds to one of
the tangent circles having infinite radius (i.e. lying on the plane C([0 :x1 :x2 :x3]) ⊂M◦
at infinity), which occurs precisely when C(p1), C(p2), C(p3) share a common tangent
line (which constitutes a component of the degenerate tangent circle). While we have
largely ignored tangent circles of infinite radius to simplify our geometric considerations,
such circles are still valid, algebraic solutions to the problem of Apollonius. It follows
that Coaklay’s equations yield distinct tangent circles unless two of C(p1), C(p2), C(p3)
are tangent.
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Over R, Coaklay remarks that the signs s correspond to the tangency directions of
the circles determined by fs relative to the C(pi). For example, one of the two circles
determined by f(1,1,−1) will meet C(p1) and C(p2) externally and C(p3) internally, while
the other circle will meet C(p1) and C(p2) internally and C(p3) externally. In particular,
the two circles determined by fs are inversively dual over R. Over more general fields,
we will define two circles of Apollonius to be inversively dual if they are both determined
by fs.

Definition 7.6. Let k be a field with char k 6= 2. For each (s2, s3) ∈ {1,−1}2, the
circles tangent to C(p1), C(p2), C(p3) corresponding to the roots of f(1,s2,s3) are said to
be inversively dual to one another.

7.2. Dual circles via degeneration. As we degenerate the circle C(pi) to a point, the
circles of Apollonius carve out a family of circles. Using Coaklay’s solutions, we will show
that this family of circles of Apollonius is finite and flat. The key will be the quadratic
formula over k[t], which is well-defined due to our assumption that char k 6= 2.

In order to degenerate the circle C(pi) to a point, we want a family of squared radii
that interpolate between r2

i and 0. We will use the family t2r2
i . We start by modifying

Coaklay’s equations to handle this degenerating family.

Definition 7.7. Let t be an indeterminate over k. Define Ai1(s, t), Bi
1(s, t), M i(s, t),

and N i(s, t) by replacing ri with tri in A1(s), B1(s), M(s), and N(s), respectively (see
Equation 7.1). Let Ri

1 be r1 if i 6= 1 and tr1 if i = 1.

f is,t(x) = (1− Ai1(s, t)2 −Bi
1(s, t)2)(x− s1R

i
1)2

− 2(M i(s, t)Ai1(s, t) +N i(s, t)Bi
1(s, t))(x− s1R

i
1)

−M i(s, t)2 −N i(s, t)2.

Given a root ρis,t of f is,t(x) (which we can solve for using the quadratic formula for
polynomials over k[t] with char k 6= 2), set

αis,t = Ai1(s, t)ρis,t + A2(s),

βis,t = Bi
1(s, t)ρis,t +B2(s).

By construction, the equations given in Definition 7.7 give a parameterization of the
family of circles tangent to C(p1), C(p2), C(p3) as C(pi) degenerates to a point. Ge-
ometrically, this family of circles arises from the family of intersections of the cones
Q(p1), Q(p2), Q(p3) as Q(pi) degenerates to a double plane:

Definition 7.8. For 1 ≤ j ≤ 3, let

Qi
t(pj) =

{
V((aiXi + biYi + Z ′i)

2 − t2r2
i (X

2
i + Y 2

i )) j = i,

V((ajXj + bjYj + Zj)
2 − r2

j (X
2
j + Y 2

j )) j 6= i,

where X` = c1 + 2a`c0, Y` = c2 + 2b`c0, Z` = c3 + (r2
` − a2

` − b2
`)c0, and Z ′` = c3 + (t2r2

` −
a2
` − b2

`)c0 (see Lemma 3.8). By construction, we have Qi
t(pj) = Q(pj) for i 6= j. We also

have Qi
1(pi) = Q(pi) and Qi

0(pi)red = V (pi) (see Remark 3.11).
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As C(pi) degenerates, the family of circles of Apollonius is given by Ai :=
⋂3
j=1Q

i
t(pj)→

Spec k[t]. Ideally, we would like to define degenerative duality geometrically in terms
of the fiber Ai1. Unfortunately, since Ai branches at multiple points along A1

k (see
Lemma 7.11), we cannot effectively keep track of which points in the fiber Ai1 coincide
as we pass to Ai0. Instead, we will apply Coaklay’s equations over k[t] (Definition 7.7) to
define degenerative duality, which will allow us to distinguish between the fibers of Ai as
we pass through the ramification locus. We give a code implementation of degenerative
duality in Appendix B.

Definition 7.9. Let s = (1, s1, s2) and s′ = (1, s′1, s
′
2). Given roots ρis,t and ρis′,t of f is,t

and f is′,t, respectively, let

αis,t = Ai1(s, t)ρis,t + A2(s),

αis′,t = Ai1(s′, t)ρis′,t + A2(s′),

βis,t = Bi
1(s, t)ρis,t +B2(s),

βis′,t = Bi
1(s′, t)ρis′,t +B2(s′),

Ct = C([1 :−2αis,t :−2βis,t : (αis,t)
2 + (βis,t)

2 − (ρis,t)
2]),

C ′t = C([1 :−2αis′,t :−2βis′,t : (αis′,t)
2 + (βis′,t)

2 − (ρis′,t)
2]).

We say that two tangent circles C(q), C(q′) are degeneratively dual through C(pi) if there
exist s and s′ such that there is a root ρis,t of f is,t and a root ρis′,t of f is′,t satisfying
C1 = C(q), C ′1 = C(q′), and C0 = C ′0. We denote C(q) that is degeneratively dual to
C(q′) through C(pi) by writing ϑiC(q) = C(q′) or simply ϑiq = q′.

While the geometric picture of degenerative duality is clear, its algebraic analog in Def-
inition 7.9 is somewhat unwieldy. We elucidate the structure of these degenerative du-
alities by representing each ϑi as a permutation matrix acting on the set A of circles of
Apollonius.

Proposition 7.10. Let en be the nth standard basis vector in F8
2. Represent the circles

of Apollonius by the set {en}8
n=1, subject to the requirement that the subsets {en, en+1}

each correspond to the inversively dual pair of circles determined by fs, where s and n
are as in Table 1. Then the action of ϑi on A is given by one of

Table 1. Signs and corresponding vectors

s n

(1, 1, 1) 1

(1, 1,−1) 3

(1,−1, 1) 5

(1,−1,−1) 7
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1

1
1

1
1

1
1

1

,


1
1

1
1

1
1

1
1

,


1
1

1
1

1
1

1
1

.
Moreover, the matrix representations of ϑi and ϑj are distinct for i 6= j.

Proof. The proof is given via symbolic computation in Appendix B. The code given
in this appendix takes indeterminates representing the centers and (choices of) radii of
three circles. For i = 1, 2, 3, the code then applies the equations of Definition 7.7 to
compute whether two circles are degeneratively dual through C(pi). The (m,n)th entry
of the matrix for ϑi consists of a 1 if em and en are degeneratively dual through C(pi)
and a 0 otherwise. �

In the following lemma, we investigate the ramification locus of Ai → Spec k[t].

Lemma 7.11. Let Ai :=
⋂3
j=1Q

i
t(pj) → Spec k[t] be the family of circles of Apollonius

as the radius of C(pi) degenerates. Assume that no two circles among C(p1), C(p2), C(p3)
are tangent. Then Ai → Spec k[t] is unramified away from a finite set of closed points.
Moreover, Ai → Spec k[t] branches at some t 6= 0 if and only if a circle in the fiber Ait
is inversively dual to itself.

Proof. By Proposition 3.9, our assumption that no two circles among C(p1), C(p2), C(p3)
are tangent ensures that the cones Q(p1), Q(p2), Q(p3) meet transversely over k. In
particular, the family Ai → Spec k[t] is unramified at t = 1. By the same reasoning,
Ai → Spec k[t] is unramified at t 6= 0 whenever C([1 :−2ai :−2bi : a2

i + b2
i − t2r2

i ]) is not
tangent to C(pj) for i 6= j.

Our goal is now to understand the ramification locus. The fiber above t = 0 consists of
four double points (compare with Section 4.2), which correspond to the confluence of the
four pairs of degeneratively dual circles. The family Ai → Spec k[t] branches at t 6= 0
if and only if C([1 : −2ai : −2bi : a2

i + b2
i − t2r2

i ]) is tangent to C(pj) for some j 6= i. In
terms of Coaklay’s equations, this ramification happens only if the discriminant of some
f is,t vanishes (see Remark 7.5). That is, the ramification of Ai away from t = 0 consists
solely of circles coinciding with their inversive duals. Moreover, this can only happen
finitely often, since the discriminant of each f is,t is a polynomial in t. �

Remark 7.12. Since the ramification locus of Ai → Spec k[t] is finite by Lemma 7.11, it
follows from Lemma 5.21 that Ai → Spec k[t] is finite and flat. Our assumptions ensure
that the circles tangent to C(p1), C(p2), C(p3) are geometrically distinct, so the fiber Ai1
consists of 8 geometrically distinct points. Thus Ai is (geometrically) an 8-sheeted cover
of A1

k. Lemma 7.11 implies that these sheets fall into two sets S1, S2, each containing
four sheets, such that ς1 ∩ ς2 = ∅ for each ς1 ∈ S1 and ς2 ∈ S2.

Based on this description, it looks like Ai has two connected components of degree four,
with each component consisting of a pair of degeneratively dual circles and their inversive
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duals. If this were the case, then we could use the familial local degree to prove that the
sum of the local indices of two inversively dual pairs of degeneratively dual circles is an
even multiple of the hyperbolic form.

The issue is that the sheets of our branched cover π : Ai → A1
k are given by an algebraic

function that does not necessarily define a morphism. Each sheet defines a set-theoretic
section ς : A1

k → Ai. If ς is in fact a morphism, then the fact that π ◦ ς is closed and π
is separated implies that ς is a closed immersion. It would then follow that Ai has eight
irreducible components, and Lemma 7.11 would imply that Ai indeed has two connected
components of degree four. In this hypothetical scenario, we can apply the familial local
degree to compute the sum of local indices over the fibers in one of these connected
components.

Lemma 7.13. Let C(q), C(q′) be inversively dual circles tangent to C(p1), C(p2), C(p3).
Assume that Ai consists of two connected components of degree four as detailed in Re-
mark 7.12. Let Y ⊂ Ai be the connected component to which C(q), C(q′) belong, and
denote Y0 = {C(d), C(d′)}. Assume that k(d) ∼= k(d′), and that k(d)/k is separable.
Then

indq σ + indq′ σ + indϑiq σ + indϑiq′ σ = 2 Trk(d)/kH.

Proof. By [BBM+21, Theorem 1.3], we may assume that k(d) = k. Remark 7.12 implies
that Ai satisfies the criteria of Theorem 5.22. Remark 7.12 furthermore characterizes
the fiber Y1 = {C(q), C(q′), ϑiC(q), ϑiC(q′)}, so we have

indq σ + indq′ σ + indϑiq σ + indϑiq′ σ = indd σ + indd′ σ.

Now indd σ = indd′ σ = H by Proposition 4.2. �

7.3. Cube of Apollonius. Our next goal is to show how Lemma 7.13, paired with
the convenient symmetry of the circles of Apollonius, would allow us to relate the local
indices of inversively dual circles. We begin by studying the symmetry of the circles of
Apollonius.

Let A denote the set of circles tangent to C(p1), C(p2), C(p3). Note that A = Ai1 for
each i. Degenerative duality gives us three involutions ϑ1, ϑ2, ϑ3 : A → A. We will show
that the eight elements of A correspond to the vertices of a cube such that each ϑi is
a reflection of the cube across a central plane parallel to one of the faces. We illustrate
this in Figure 12, with the relevant circles labeled in Figure 11.

Lemma 7.14. There exists a cube with vertices A such that each ϑi is a reflection of
the cube across a central plane parallel to one of its faces.

Proof. The cubical graph is the unique connected bipartite trivalent graph. Let G be the
graph whose set of vertices is A, and where two elements of A share an edge if and only
if they are degeneratively dual to one another via some ϑi. We will prove the following
by appealing to Proposition 7.10:
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1
3

2

Figure 11. Circle labels

(i) If C ∈ A, then ϑi(C) 6= C for all 1 ≤ i ≤ 3.

Proof. Each ϑi does not fix any standard basis vector.

(ii) If C ∈ A, then ϑi(C) 6= ϑj(C) for i 6= j.

Proof. For each 1 ≤ n ≤ 8, the vectors ϑien and ϑjen are distinct.

(iii) If C ∈ A, then ϑiϑj(C) = ϑjϑi(C).

Proof. Each pair of the three matrices in Proposition 7.10 commute.

(iv) If C ∈ A, then ϑ1ϑ2ϑ3(C) 6= C.

Proof. As a matrix, we have

ϑ1ϑ2ϑ3 =


1

1
1

1
1

1
1

1

.
This does not fix en for any 1 ≤ n ≤ 8.

Item (i) states that G contains no loops, so that G is indeed a graph. It follows from
(ii) that G is trivalent. Note that ϑ2

i = idA for all i, so (ii) and (iii) imply that any odd
cycle in G must be a 3-cycle obtained by applying ϑ1, ϑ2, ϑ3 in any order. It then follows
from (iv) that G contains no odd cycles, so G is bipartite. Items (i) through (iv) imply
that there are 8 operations {ϑi1ϑ

j
2ϑ

`
3}1
i,j,`=0 that all yield distinct circles; since A has 8

vertices, this implies that G is connected and is therefore the cubical graph.

Now thinking of G as a cube, item (iii) states that each face of G is given by two instances
of ϑi on a pair of parallel edges and two instances of ϑj on the remaining pair of parallel
edges. This in turn implies that all four instances of ϑi form a set of four parallel edges on
G, and ϑi swaps the faces of G that do not contain any of these four parallel edges. �

Remark 7.15. Phrased differently, Lemma 7.14 states that the set of circles of Apollo-
nius is a (Z/2Z)3-torsor.

Over the reals, ϑi swaps internal and external tangency with respect to C(pi). Since
inversive duality swaps internal and external tangency with respect to all three original
circles, we see that inversive duality is equal to ϑ1ϑ2ϑ3. In terms of Figure 12, inversively
dual circles are body-diagonal in the cube of Apollonius. It turns out that this still holds
over any field of characteristic not 2:
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ϑ1

ϑ3

ϑ2

ϑ1

ϑ2

ϑ1

ϑ3

ϑ2

ϑ1

ϑ3

ϑ3
ϑ2

Figure 12. Cube of Apollonius

Proposition 7.16. The circles C and ϑ1ϑ2ϑ3(C) are inversively dual for each C ∈ A.

Proof. In the context of Proposition 7.10, we have

ϑ1ϑ2ϑ3 =


1

1
1

1
1

1
1

1

.
By assumption, {ei, ei+1} forms a pair of inversively dual circles for each i = 1, 3, 5, 7,
so it follows that ϑ1ϑ2ϑ3 swaps inversively dual circles. �

We can now show that the sum of local indices of inversively dual circles is hyperbolic.

Lemma 7.17. Let C(q), C(q′) ∈ A be inversively dual to one another. Assume that
C(q) 6= C(q′). Further assume that k(q) ∼= k(q′), that k(q)/k is separable, and that for
each 1 ≤ i ≤ 3, the extension k(d)/k is separable for each double point d ∈ Ai0. Then

indq σ + indq′ σ = Trk(q)/kH.

Proof. By the running assumption that the circles of Apollonius A are geometrically
distinct, together with our assumption that k(q) ∼= k(q′), the form indq σ + indq′ σ has
rank 2[k(q) : k]. It thus suffices to prove that indq σ + indq′ σ is hyperbolic. We will
actually show that 2(indq σ + indq′ σ) is an even multiple of a hyperbolic form, which
will also suffice.
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Figure 13. Four body diagonal circles

By Lemma 7.13, the sum of local indices of the four circles on any two body diagonal
edges of the cube of Apollonius is an even multiple of the hyperbolic form (see Figure 13).
By adding or subtracting local indices along three edges and their body diagonals, we can
express 2(indq σ+ indq′ σ) in terms amenable to Lemma 7.13 (see Figure 14). Explicitly,

2(indq σ + indq′ σ) = 2(indq σ + indϑ1ϑ2ϑ3q σ)

= indq σ + indϑ1q σ − (indϑ1q σ + indϑ1ϑ3q σ) + indϑ1ϑ3q σ + indϑ1ϑ2ϑ3q σ

+ indq σ + indϑ2q σ − (indϑ2q σ + indϑ2ϑ3q σ) + indϑ2ϑ3q σ + indϑ1ϑ2ϑ3q σ

= (indq σ + indϑ1ϑ2ϑ3q σ + indϑ1q σ + indϑ2ϑ3q σ)

− (indϑ1q σ + indϑ2ϑ3q σ + indϑ2q σ + indϑ1ϑ3q σ)

+ (indq σ + indϑ1ϑ2ϑ3q σ + indϑ2q σ + indϑ1ϑ3q σ).

We conclude by noting that ϑ2ϑ3q is the inversive dual of ϑ1q, and ϑ1ϑ3q is the inversive
dual of ϑ2q, so Lemma 7.13 implies that 2(indq σ+ indq′ σ) is an even multiple of H. �

Remark 7.18. As a consequence of Lemma 7.17, we have a conditional new method for
divining a geometric interpretation of indp σ: any interpretation that sends inversively
dual pairs to hyperbolic forms of the appropriate rank will give an enriched enumerative
theorem about the circles of Apollonius.

There are two key assumptions preventing us from carrying out this program. The first
is that we want our parameterization of the sheets of Ai → A1

k to give us a decomposition
of Ai into two connected components. The second assumption, which should be easier
to resolve, is that k(q) ∼= k(q′) for C(q), C(q′) inversively dual and k(d) ∼= k(d′) for
C(d), C(d′) ∈ Ai0 the double circles to which C(q), C(q′) and their ith degenerative duals
degenerate.
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Figure 14. Sum of local indices of conjugate circles

Appendix A. Solving for the cone of tangent circles

We include a short piece of Sage code that performs the necessary calculation from
Lemma 3.8.

var(’x’,’y’,’z’,’a’,’b’,’r’);
var(’,’.join(’c%s’%i for i in range (3)));
var(’,’.join(’A%s’%i for i in range (1 ,7)));
f = A1*x^2+A2*y^2+A3*z^2+A4*x*z+A5*y*z+A6*x*y;
f = f.subs(z == -a*x-b*y-2*r^2*c0);
f = expand(f.subs(x == c1+2*a*c0, y == c2+2*b*c0));
eqns = [f.coefficient(c0 ,2) == 4*(a^2+b^2-r^2),\

f.coefficient(c1 ,2) == 1,\
f.coefficient(c2 ,2) == 1,\
f.coefficient(c0*c1 ,1) == 4*a,\
f.coefficient(c0*c2 ,1) == 4*b,\
f.coefficient(c1*c2 ,1) == 0];

solve(eqns , A1, A2, A3, A4, A5, A6)

Appendix B. Degenerative duality

In this appendix, we implement the equations of Definition 7.7 to compute whether two
circles are degeneratively dual through C(pi).

var(’x,t’);
var(’,’.join(’a%s’%i for i in range (1 ,4)));
var(’,’.join(’b%s’%i for i in range (1 ,4)));
var(’,’.join(’r%s’%i for i in range (1 ,4)));
a = [a1,a2 ,a3];
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b = [b1,b2 ,b3];

def A_1(a,b,r,s):
F = (a[0]-a[1])*(b[0]-b[2])-(a[0]-a[2])*(b[0]-b[1])
return (((s[0]*r[0]-s[1]*r[1])*(b[0]-b[2])\

-(s[0]*r[0]-s[2]*r[2])*(b[0]-b[1]))/F)

def B_1(a,b,r,s):
F = (a[0]-a[1])*(b[0]-b[2])-(a[0]-a[2])*(b[0]-b[1])
return (((s[0]*r[0]-s[2]*r[2])*(a[0]-a[1])\

-(s[0]*r[0]-s[1]*r[1])*(a[0]-a[2]))/F)

def A_2(a,b,r,s):
D = a[0]^2 -a[1]^2+b[0]^2 -b[1]^2 -(r[0]^2 -r[1]^2)
E = a[0]^2 -a[2]^2+b[0]^2 -b[2]^2 -(r[0]^2 -r[2]^2)
F = (a[0]-a[1])*(b[0]-b[2])-(a[0]-a[2])*(b[0]-b[1])
return (((b[0]-b[2])*D-(b[0]-b[1])*E)/(2*F))

def B_2(a,b,r,s):
D = a[0]^2 -a[1]^2+b[0]^2 -b[1]^2 -(r[0]^2 -r[1]^2)
E = a[0]^2 -a[2]^2+b[0]^2 -b[2]^2 -(r[0]^2 -r[2]^2)
F = (a[0]-a[1])*(b[0]-b[2])-(a[0]-a[2])*(b[0]-b[1])
return (((a[0]-a[1])*E-(a[0]-a[2])*D)/(2*F))

def R(a,b,r,s):
A1 = A_1(a,b,r,s)
A2 = A_2(a,b,r,s)
B1 = B_1(a,b,r,s)
B2 = B_2(a,b,r,s)
m = A2+A1*s[0]*r[0]-a[0]
n = B2+B1*s[0]*r[0]-b[0]
f = (x-s[0]*r[0])^2*(1 - A1^2-B1^2)\

-2*(m*A1+n*B1)*(x-s[0]*r[0])-m^2-n^2
rts = [u.right_hand_side () for u in solve(f == 0, x)]
return(rts)

def degen(a,b,r,signs):
X = [];
Y = [];
Z = [];

for s in signs:
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A1 = A_1(a,b,r,s);
A2 = A_2(a,b,r,s);
B1 = B_1(a,b,r,s);
B2 = B_2(a,b,r,s);
for Rad in R(a,b,r,s):

alpha = A1*Rad+A2;
beta = B1*Rad+B2;
X.append (-2* alpha );
Y.append (-2*beta);
Z.append(alpha ^2+ beta^2-Rad ^2);

W = [];
M = [];
for i in range (8):

W.append ([X[i].subs(t=0),\
Y[i].subs(t=0),\
Z[i].subs(t=0)]);

for i in range (8):
M.append ([int(W[i]==W[j]) for j in range (8)]);

return(Matrix(M)-identity_matrix (8))

signs = [];
for i in range (4):

s = [1];
for j in format(i,’02b’):

s.append ((-1)^ int(j));
signs.append(s);

for ii in range (3):
r = [r1,r2,r3];
print(’degenerative duality for i =’,ii+1)
r[ii] = t*r[ii];
print(degen(a,b,r,signs),’\n’)

This code outputs three symmetric 8×8 matrices, which we include below. Each column
and row corresponds to a solution to Coaklay’s equations. Columns/rows 1 and 2 corre-
spond to the two solutions at s = (1, 1, 1), 3 and 4 to the two solutions at s = (1, 1,−1),
5 and 6 to the two solutions at s = (1,−1, 1), and 7 and 8 to the two solutions at
s = (1,−1,−1). The (m,n)th entry of the matrix corresponding to the degenerative
duality ϑi is 1 if the mth and nth solutions coincide when ri = 0 and is 0 otherwise.
Trivially, each diagonal entry will be 1, so we subtract off the identity matrix to make
the matrices for degenerative duality more readable.
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degenerative duality for i = 1
[0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0]

degenerative duality for i = 2
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]

degenerative duality for i = 3
[0 0 1 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[1 0 0 0 0 0 0 0]
[0 1 0 0 0 0 0 0]
[0 0 0 0 0 0 1 0]
[0 0 0 0 0 0 0 1]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 1 0 0]

Appendix C. Local phylogeny of enriched enumerative geometry

The geometricity problem (Question 5.1) asks for a classification of enriched enumerative
problems in terms of their local geometric interpretation. One issue with this question as
stated is that what constitutes a “valid” geometric interpretation is subjective. As seen in
this article, one can derive multiple intrinsically interesting local geometric descriptions
for a single enriched enumerative problem. In order for the geometricity problem to
become attackable, this subjectivity must be resolved.

One possible route forward is to develop not just a taxonomy, but rather a phylogeny
of enriched enumerative problems. Perhaps enriched enumerative problems inherit local
interpretations from their genus, family, order, and so on, with all problems belonging
to the intersection-theoretic domain given by Bézout’s theorem (see Section 5.1). Ex-
panding on Example 5.3, we will discuss a few potential phyla, which we put together
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Rational curves on hypersurfaces

Lines on
hypersurfaces

Lines on cubic
surfaces [KW21]

Lines on quintic
threefolds [Pau22]

Conics on quintic
threefolds (BMP)

Twisted cubics on
hypersurfaces

[LP22]

Figure 15. Rational curves on hypersurfaces

in Figure 19. In the following figures, solid lines refer to established clades of problems,
while dotted lines refer to conjectural relationships.

Rational curves on hypersurfaces. In Example 5.3 (i), we discussed how both lines
on cubic surfaces and lines on quintic threefolds share a common geometric description
in terms of Segre involutions [KW21,Pau22]. Conjecturally, one might expect another
geometric description for lines on hypersurfaces that can also be applied to other rational
curves. Levine and Pauli give various quadratic counts of twisted cubics on hypersurfaces
and complete intersections (although they do not treat the local information) [LP22],
and the author has been working with Thomas Brazelton and Sabrina Pauli (BMP)
to understand both the global enriched count and the local interpretation of conics on
quintic threefolds. We put this phylum of “rational curves on hypersurfaces” together in
Figure 15.

Varieties meeting a specified locus. In Example 5.3 (iii), we explained how the local
geometric interpretation of conics through eight lines in P3 [DGGM21] can be applied
more generally to plane curves of higher degree through larger collections of lines. These
counts, along with the count of twisted cubics through twelve lines, are the subject
of ongoing joint work of the author and Sabrina Pauli (MP). Counting twisted cubics
meeting twelve lines is a “space curves through lines” problem, and one might expect
such problems to be closely related to “plane curves through lines” problems.

Thinking of points as linear varieties, the count of rational curves through a fixed number
of points appears, at least superficially, to be related to counting space curves through
lines. Ongoing work of Jesse Kass, Marc Levine, Jake Solomon, and Kirsten Wickelgren
(KLSW) gives an enriched count of rational curves through sets of points, with the
local geometric interpretation being given by an enriched Welschinger invariant (see
e.g. [PW21, Section 9]). Could enriched Welschinger invariants provide an alternative
geometric description for counts of (rational) space curves through lines? We illustrate
this conjectural relationship in Figure 16.

As discussed in Example 5.3 (ii), Srinivasan–Wickelgren’s enriched count of lines through
codimension 2 planes form a family of enriched enumerative problems whose shared
geometric interpretation is given by a generalization of the cross-ratio. Work of Brazelton
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Curves meeting linear spaces

Rational curves
through points

(KLSW)

Curves through
lines

Conics through
lines [DGGM21]

Plane curves
through lines (MP)

Space curves
through lines

Figure 16. Curves meeting linear spaces

Varieties meeting specified locus

Curves meeting
linear spaces

Linear spaces
meeting linear
spaces [Bra22]

Lines through
hyperplanes

[SW21]

Linear series on
hyperelliptic

curves [CDH20]

Figure 17. Varieties meeting specified locus

on the Wronski problem [Bra22] shows that these same generalized cross-ratios can be
used as a geometric interpretation for the count of d-planes meeting (n−d)-planes in Pn.
We thus obtain a family of problems of the form “linear spaces meeting linear spaces,”
as shown in Figure 17.

Brazelton also indicates that the Wrosnki problem might have a second geometric in-
terpretation in terms of the enriched Welschinger invariant of Kass–Levine–Solomon–
Wickelgren. This would provide an intriguing connection between problems of the form
“linear spaces meeting linear spaces” and problems of the form “curves meeting linear
spaces.” Another potentially related result is Cotterill–Darago–Han’s enriched Plücker
formula for linear series on hyperelliptic curves [CDH20]. While this article does not
give a geometric description for the relevant local indices, there are formulas for the
local indices in terms of Wronskian determinants. This suggests that Brazelton’s geo-
metric interpretations could be applied to relate [CDH20] to the other problems listed
in Figure 17.

Tangency problems. We now turn to problems whose local interpretation may be
related to this article’s treatment of the circles of Apollonius (McK22). Classically, the
count of spheres tangent to four given spheres can be derived from the count of circles
tangent to three given circles. It seems reasonable to expect a geometric interpretation
analogous to the one given in Lemma 6.3 to hold for the count of spheres tangent to
four spheres. One could call this hypothetical family “quadric tangency problems,” since
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Tangency problems

Linear tangency Bitangents to plane
quartics [LV21]

Quadric tangency

Circles of
Apollonius
(McK22)

Spheres tangent to
four spheres

Figure 18. Tangency problems

one is interested in counting quadric varieties that are tangent to a given collection of
objects.

Speculatively, there should be a connection between Larson–Vogt’s “Qtype” for bitan-
gents to plane quartics [LV21, Definition 1.2] and the geometric interpretations that
would arise if Remark 7.18 happens to work out. Given a circle C(q) tangent to a given
trio of circles C(p1), C(p2), C(p3), there should be an invariant ti(q) that records an en-
richment of the tangency direction of C(q) to C(pi). Moreover, if C(q′) is the inversive
dual of C(q), then it should hold that 〈

∏3
i=1 ti(q)〉 + 〈

∏3
i=1 ti(q

′)〉 is hyperbolic. This
product of tangency directions would then be analogous to the Qtype ∂Lf(z1) · ∂Lf(z2),
which records the “tangency directions” of a bitangent L to the plane quartic defined by
f at the two points z1, z2 of tangency.

This suggests that while the count of bitangents to plane quartics is a “linear tangency”
problem, there is a larger family of “tangency” problems encompassing both of these
results (see Figure 18). We posit that such tangency problems can be characterized by
local geometric interpretations that are products of “tangency directions” over the locus
of tangency. This would be compelling evidence in favor of a phylogenetic approach to
classifying enriched enumerative problems, since these shared geometric interpretations
would arise from completely different calculations.
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Figure 19. Local phylogeny of enriched enumerative problems
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