BEZOUTIANS AND INJECTIVITY OF POLYNOMIAL MAPS

STEPHEN MCKEAN

ABSTRACT. We prove that an endomorphism f of affine space is injective on rational
points if its Bézoutian is constant. Similarly, f is injective at a given rational point if
its reduced Bézoutian is constant. We also show that if the Jacobian determinant of
f is invertible, then f is injective at a given rational point if and only if its reduced
Bézoutian is constant.

1. INTRODUCTION

Let k be a field, and let f = (f1,..., fn): A} — A7 be a polynomial morphism. In this
note, we study the injectivity of f at the origin using the multivariate Bézoutian.

Definition 1.1. Let x = (z1,...,2,) andy = (1, ..., ¥yn). The (multivariate) Bézoutian
of f:=(fi(x),..., fu(x)) is the determinant

Béz(f) := det(Ay;) € k[x,y],
where
A — fi(yla ey Yi—1, T, e 7xn) B fi(ylv o Yy Ty - 7'TTL)
ij — .
Lj—Yj
The reduced Bézoutian of f is Béz(f) := Béz(f) mod (f(x), f(y)).

Definition 1.2. Let R be a polynomial ring over a field k. Let I be an ideal of R. If 1
is a proper ideal, then k¥ C R/I. We say that an element ¢ € R/I is constant if (i) I is
a proper ideal and ¢ € k, or if (ii) I is not proper, in which case ¢ = 0.

Multivariate Bézoutians generalize the classical Bézoutian of a univariate polynomial.
They naturally arise in the study of global residues (see e.g. [SS75,BCRS96]). We will
show that f is injective at a k-rational point ¢ if Béz(f — ¢) is constant.

Theorem 1.3. Let k be a field, and let f = (fi,..., fa): Ay — A} be a polynomial
morphism with finite fibers. Let ¢ = (q1, ..., qn) be a k-rational point of A}. If Béz(f—q)
is constant, then |f~(q)] < 1.

We will also see that f is injective on k-rational points if Béz(f) is constant.

Corollary 1.4. If Béz(f) is constant, then f is injective on k-rational points.
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In general, the constancy of Béz(f) (or Béz(f — q)) is a sufficient but not necessary
condition for injectivity (see Example . In Lemma , we describe circumstances
under which Theorem gives a necessary and sufficient condition for injectivity at a
rational point.

Bass, Connell, and Wright have shown that if k£ has characteristic 0 and Jac(f) € k*,
then f is invertible if and only if f is injective on k-rational points [BCW82, Theorem
2.1]. In particular, Theorem and Lemma give a reformulation of the Jacobian
conjecture in characteristic 0.

Corollary 1.5. Let k be an algebraically closed field of characteristic 0, and let f =
(fi,--oy fu): A} — A} be a polynomial morphism. Assume Jac(f) € k*. Then Béz(f—q)
is constant for all ¢ € A (k) if and only if f is invertible.

Note that Béz(f) = Béz(f — ¢) for any k-rational point ¢. In particular, if Béz(f) is
constant, then Béz(f — ¢) is constant for all ¢ € A} (k). This gives a sufficient but not
necessary criterion for the Jacobian conjecture.

Corollary 1.6. Let k be a field of characteristic 0, and let f = (f1,..., fn): A} — AT be
a polynomial morphism. Assume Jac(f) € k™. If Béz(f) is constant, then f is invertible.

The key observation leading to Theorem is that Béz(f — q) records information about
the dimension of k[x|/(f—q) as a k-vector space. We will recall the relevant details about
Bézoutians in Section[2] We will then prove Theorem [I.3]in Section[3] Finally, we discuss
Theorem [[.3]in the context of the Jacobian conjecture in Section [4]
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thank Thomas Brazelton and Sabrina Pauli for various enlightening conversations about
Bézoutians, and Cleto Miranda-Neto for helpful correspondence. The author received
support from Kirsten Wickelgren’s NSF CAREER grant (DMS-1552730).

2. BEZOUTIANS

Throughout this section, let f : A} — A} be a morphism with finite fibers. This
ensures that (fi,..., f,) is a complete intersection ideal, which allows us to utilize the
multivariate Bézoutian [BCRS96, Section 3.

Remark 2.1. As noted by Scheja—Storch [SS75, p. 182] and Becker—Cardinal-Roy—
Szafraniec [BCRS96|, the Bézoutian records information about the dimension of k[x]/(f)
as a k-vector space. To see this, consider the isomorphism
kIx]  KIX] k[x,y]
e (S —
) ()

defined by p(a(x)®b(x)) = a(x)b(y). The inverse is characterized by p~*(x;) = 2;®1 and
pH(y;) = 1®x;. Since p is an isomorphism, there is an element B € k[x]/(f) @, k[x]/(f)
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such that u(B) = Béz(f). Moreover, given a basis {¢;} for k[x]/(f), there exists a basis
{d;} for k[x]/(f) such that B =), ¢; ® d; [BCRS96, Theorem 2.10(iii)].

Proposition 2.2. If Béz(f — q) is constant, then dimy k[x]/(f —q) < 1.

Proof. We will prove that if Béz(f) is constant, then dimy k[x]/(f) < 1. The same
proof holds after replacing f with f —g. Given any basis {ci,...,cn} of k[x]/(f), write
Béz(f) = >, ; Bijci(x)c;(y), where Bj; € k. The m x m matrix (By;) is non-singular by
[BMP21b, Theorem 1.2|, so (B;;) must contain at least m non-zero entries. In particular,
the number of non-zero terms of 3, ; Bijci(x)c;(y) is at least m = dimy, k[x]/(f).

First, suppose Béz(f) € k*. Pick a monomial basis {ci,...,cn} of k[x]/(f), so that
> Bijci(x)cj(y) consists of a single non-zero term, so 1 > dimy k[x]/(f) (and in fact,

equality holds). Next, if Béz(f) = 0, then m = dimy, k[x]/(f) = 0. O

Let Jac(f) = det(%) be the Jacobian of f, and let §: k[x,y] — k[x]| be given by

d(a(x,y)) = a(x,x). We can recover Jac(f) from Béz(f). This appears in [SS75, p. 184]
and, modulo (f), in [BCRS96, p. 90|, but we recall the details here.

Proposition 2.3. We have §(Béz(f)) = Jac(f).
Proof. Note that ¢ is a ring homomorphism, so it suffices to show that 6(4A;;) = %.
J
The result follows by taking a formal partial derivative, as we now explain. Let
_ f’L(X) - fi(xly v 71;]'*17 yj7 :UjJrla .o 7xn)

i\ X Y5) = 3
i (%, 5) Z;— g

so that 6(A;;) = fi;(x,x;). Since A;; is a polynomial, 6(A;;) and f;; are polynomials as
well. Now

of, 0
ai; = g, Vi) = flon, iy, g, )
B
= 3_:1)] (fij<x7 yj) ) (xj - yj))
8 ij
_ _a];j (g — yy) + fi(xy,):

Thus

’ (aa];) -’ (a}i; () _yj)””(x’yj))

=0+ fi(x, 2)
= 5(Aij).

Since % € k[x|, we have 5(%) — 9% "which proves the desired result. O
J J

-
ox;
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Remark 2.4. If Jac(f) € k* and Béz(f) is constant, then Proposition [2.3| implies that
Béz(f) # 0.

Example 2.5. Let f = (22,23, 22). The set {1, 21, To, T3, T1T2, T1T3, ToT3, T1T2T3} 1S a
basis for k[x]/(f). Let
B = T1T2T3 & 1 + Tols3 X x1 + 13 R xTo+ 1129 X T3

+ 21 @ X3 + T2 ® 1123 + X3 Q@ 12 + 1 @ T17973.
By Definition [I.1], we have

Béz(f) = z1x9ws + 2x3y1 + X123Y2 + T122Y3

+ T1Y2y3 + T2y1Y3 + T3Y1Y2 + Y1Y2Y3-

One can readily check that u(B) = Béz(f). Moreover, §(Béz(f)) = 8x1xoz3, which is
equal to Jac(f) (see Proposition [2.3).

3. PROOF OF THEOREM [L.3]

Let ¢ = (qu,...,¢,) € A} be a k-rational point. As a consequence of the structure
theorem for Artinian rings, the dimension of k[x|/(f — q) as a k-vector space is closely
related to the fiber cardinality |f~'(q)|.

Proposition 3.1. Let (f —q) = (fi —q1,---, fn — qn) be an ideal in k[x|. Suppose that
7Yq) = {p1,-..,pm} is a finite set of points. Then dimy k[x]/(f —q) > |f~(q)].

Proof. Since f~1(q) = V(f — q) is a finite set, k[x]/(f — ¢) is Artinian by [Sta21], Lemma
O00KH]. Let m; be the maximal ideal in k[x] corresponding to p;. By the structure
theorem for Artinian rings (see [Sta21, Lemma 00JA| or [AM69, Theorem 8.7]), there is
an isomorphism

(f-a 3(f-a
Thus dimy, k[x]/(f —q) = > ., dimy k[X]w,/(f — ¢), which implies the claim. O

We are now prepared to prove Theorem and Corollary [T.4]

Proof of Theorem[1.3 By Proposition 2.2 we have dimy k[x]/(f — ¢) < 1, so Proposi-
tion [3.1] implies that | f~!(q)| < 1. O

Proof of Corollary[1.4} Note that for any k-rational point g, we have Béz(f — q) =
Béz(f). Thus if Béz(f) € k, then Béz(f — q) € k for all ¢ € A}(k). By Theorem [1.3] f
is injective on k-rational points. U


https://stacks.math.columbia.edu/tag/00KH
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https://stacks.math.columbia.edu/tag/00JA
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4. DRUZKOWSKI MORPHISMS WITH CONSTANT BEZOUTIAN

If we assume that Jac(f) € k, then we get slightly stronger injectivity results. By the
work of Bass, Connell, and Wright [BCW82, Theorem 2.1], we can study the Jacobian
conjecture by studying the injectivity of morphisms with Jac(f) € k*. We start with
the following standard result.

Proposition 4.1. If f: A} — A} has Jac(f) € k™, then f has finite fibers.

Proof. Let X = k[x]/(f), and recall that the module of Kéhler differentials 2x/; is the

cokernel of the Jacobian matrix (gj:) Since Jac(f) € k*, we have that Qx/, = 0 and

hence f is unramified. By [Sta2l, Lemma 02V5|, f is locally quasi-finite. Since A} is
Noetherian, f: A} — A} is quasi-compact. Thus [Sta2l, Lemma 01TJ| implies that f is
quasi-finite. In particular, f has finite fibers [Sta21, Lemma 02NH]|. O

Remark 4.2. The statement that f has finite fibers is equivalent to V(f—g) being a finite
set for all g. Assuming Jac(f) € k*, it was shown by van den Essen [vdE00, Theorem
1.1.32] that |V(f—q)| < [k(x) : k(f)]. Miranda-Neto also proved the finiteness of V(f—q)
using derivations and differentials [MN19, Theorem 3.1].

We saw in Proposition [3.1| that dimy k[x]/(f — ¢) > |f~'(¢)|- Assuming that k is alge-
braically closed of characteristic 0 and Jac(f) € k*, this inequality is an equality.

Proposition 4.3. Let k be an algebraically closed field of characteristic 0. If f: A} — A}
has Jac(f) € k*, then dimy k[x]|/(f — q) = |f~*(q)|. (See also [MN19, Corollary 5.2].)

Proof. We need to show that if p € f~!(¢) with corresponding maximal ideal m, then
dimy, k[x]m/(f — ¢) = 1. Since f has finite fibers, k[x|n/(f — ¢) is a local Artin ring. In
particular, k[x]n/(f — q) is a finitely generated algebra over its residue field. Moreover,
the residue field is k, since k is algebraically closed and m is a closed point. We will
conclude by showing that k[x]n/(f — ¢) is in fact a field and noting that any finitely
generated k-algebra is isomorphic to k (since k is algebraically closed).

Since k has characteristic 0, [SS75, (4.7) Korollar| implies that Jac(f) generates the socle
of k[x]m/(f — q), which is the annihilator of the maximal ideal m. That is, the maximal
ideal of k[x]wn/(f — q) is annihilated by a scalar, so this maximal ideal must be the zero
ideal. In particular, kx|, /(f — ¢) is a field.

Alternatively, one can note that Jac(f) € k* implies that V(f — ¢) is smooth as an
affine scheme. Moreover, V(f — ¢) has Krull dimension zero by Proposition [£.1 Since
char k = 0, it follows that V(f —q) is regular, so k[x]w/(f — q) is a regular local ring over
an algebraically closed field. By the Cohen structure theorem, the m-adic completion of
k[x|m/(f — q) is a ring of power series over k in 0 generators (i.e. k itself), so k[x]|n/(f —
q) = k as rings. But this suffices to prove that dimy k[x|./(f —¢) = 1. O

Remark 4.4. In the course of Proposition 4.3, we have shown that if £ is a field of
characteristic 0 and f: A} — A} has Jac(f) € k>, then the ideal (fi —q1,..., fn—¢qn) C


https://stacks.math.columbia.edu/tag/02V5
https://stacks.math.columbia.edu/tag/01TJ
https://stacks.math.columbia.edu/tag/02NH
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k[x] is radical. Indeed, the structure theorem for Artinian rings allows us to decompose
k[x]/(f — q) as a product of local Artinian rings, each of which is a field by [SS75,
(4.7) Korollar|. In particular, (f — ¢) is a finite intersection of maximal ideals and is
hence radical. This gives a proof of [MN19, Theorem 3.1] not relying on derivations or
differentials, as asked by Miranda-Neto [MN19, Remark 3.3].

If Jac(f) € k*, we get a converse to Theorem (assuming k is algebraically closed
with char k = 0).

Lemma 4.5. Let k be an algebraically closed field of characteristic 0. If Jac(f) € k*
and f is injective at q € A} (k), then Béz(f — q) is constant.

Proof. Since f is injective at ¢, Proposition implies that dimy k[x|/(f —¢) < 1.
If dimy k[x]/(f — q) = 0, then Béz(f —q) = 0 € k. If dimy k[x]/(f — q) = 1, then
Ex,y]/(f(x) —q, f(y) — q) 2k ® k= k. Thus Béz(f — q) € k, as desired. O

Corollary follows from Theorem Lemma and [BCW82, Theorem 2.1]. Using
Corollary [1.6, we can prove the Jacobian conjecture for any morphism whose Bézoutian
is a constant. An important class of morphisms to consider are Druzkowski morphisms.

Definition 4.6. A morphism f: A} — A7 is called a Druzkowski morphism if f is of
the form (z1+ (001, an@i)?, ... w0+ (O, aniw;)?®) with Jac(f) € k*. We also say that
f is the Druzkowski morphism determined by the matrix (a;;).

It was proved by Druzkowski |Dru83, Theorem 3| that if the Jacobian conjecture is
true for all Druzkowski morphisms over a field k of characteristic 0, then the Jacobian
conjecture is true over k. By [BCW82, (1.1) Remark 4|, the Jacobian conjecture over C
implies the Jacobian conjecture over all fields of characteristic 0.

If (a;;) is strictly upper triangular or strictly lower triangular, then the Druzkowski
morphism determined by (a;;) has constant Bézoutian. This allows us to recover the
well-known solution of the Jacobian conjecture for such morphisms [Trul5, Theorem
1.8]:

Proposition 4.7. Let k be an algebraically closed field of characteristic 0. Suppose
a;; = 0 either for all i > j or for all i < j. Then the morphism

fo= (o + Q0o ), + (D07 anjg)?) s A — A7
is invertible and has Jac(f) = 1.

Proof. First suppose a;; = 0 for all 7 > j. Since a;; = 0 for ¢ > j, we have A;; = 0 for
i > j. Since a; = 0 for all 7, we have A;; = 1 for all i. Thus Béz(f) = Jac(f) =1, and f
is invertible by Corollary [I.6] Symmetrically, if a;; = 0 for all i < j, then we again have
Béz(f) = Jac(f) = 1. O
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Proposition follows from |Dru83, Theorem 5| when the rank of (a;;) is 0, 1, 2, or
n — 1. As mentioned in |Dru83, Remark 6], f is a Druzkowski morphism (in particular,
Jac(f) € k) only if rank(a;;) < n. More strongly, Druzkowski proved that if the
Jacobian conjecture is true for all Druzkowski morphisms with (a;;)*> = 0, then the
Jacobian conjecture is true in general [Dru01, Theorem 2|.

Since every nilpotent matrix is similar to a strictly upper triangular matrix, and since an
invertible matrix P determines an automorphism P: A? — A? given by P(x) = Px7,
Proposition gives a potential to approach the Jacobian conjecture [Mei95]. Given an
invertible matrix P and a Druzkowski morphism f determined by (a;;), we would like
to find automorphisms S,7: A} — A} such that So f oT' is the Druzkowski morphism
determined by P(a;;)P~*. It suffices to reduce to the case where P is an elementary
matrix. If P is a permutation matrix, then finding S, T is straightforward.

Proposition 4.8. [GTGZ99, Proposition 3.1] Let P be a permutation matriz. If f
is the Druzkowski morphism determined by (a;;), then P o f o P~ is the Druzkowski
morphism determined by P(a;;)P~.

Paired with Proposition , we recover |[GTGZ99, Theorem 3.2]. However, Meisters
proved that not all nilpotent matrices are cubic similar to a strictly upper triangular
matrix [Mei95|, which suggests that finding such automorphisms S,7" is not trivial.
Indeed, the obvious trick does not quite work when P is a row multiplication matrix, as
we show in Remark [£.9) Row addition matrices seem to be even more problematic than
row multiplication matrices.

Remark 4.9. Let e; be the i*" standard column vector. Let D; = (e; --- me; --- e,)
for some m € k. If f is the Druzkowski morphism determined by (a;;), then Do fo D!
has matrix D;(a;;)D; " but is not quite a Druzkowski morphism. Indeed, we compute
Dz?) (@) f o Dl_l = (.Tl + (m‘lalixi + Z];ﬁz a1j$j)3, ceey
m2xi + (Cl“l'l + Zj;éi maijxj)?’, R

Ty + (M agw; + Zj# njj)”).

This is a Druzkowski morphism if and only if m = +1, since we need m?z; = ;.
By Propositions [4.7| and [4.§] and Remark [£.9] we get the following corollary.

Corollary 4.10. If (a;j) is conjugate to a strictly upper triangular matriz via permuta-
tion matrices and £1 row multiplications, then the Druzkowski morphism determined by
(a;j) is invertible.

Example 4.11. If all entries of (a;;) are non-negative real numbers, then (a;;) is nilpo-
tent if and only if it is permutation-similar to a strictly upper triangular matrix. Un-
fortunately, Corollary does not cover all Druzkowski morphisms. For example, the
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matrix
0O 1 0
A=1-1 0 1
0O 1 0

is not conjugate to a strictly upper triangular matrix via permutation matrices and +1
row multiplications |[GTGZ99, (1.6)]. Moreover, the Druzkowski morphism f4 deter-
mined by A has Béz(fa) € k, so one cannot hope for Corollary to be of use for
general Druzkowski morphisms. Nevertheless, the Jacobian conjecture is true for f4, so
Béz(fa —q) = 1 for all q.

It is known that Druzkowski morphisms are injective at the origin |[Dru83| Proposition
1], so Béz(f) = 1 for any Druzkowski morphism f by Lemma 4.5, Indeed, Jac(f) = 1 for
any Druzkowski morphism, so 1 = Jac(f) mod (f). Since Béz(f) € k and § is injective
on k (see Section , we have Béz(f) = 1. Similarly, Jac(f — q) = 1 for any k-rational
point ¢ € A}, so if Béz(f — q) is constant, then Béz(f — q) = 1.

Question 4.12. Given a Druzkowski morphism f, is Béz(f —q) =1 for all ¢ € AP(k)?

Since Béz(f) = 1, we have Béz(f) = 1 mod (f(x), f(y)). Since Béz(f) = Béz(f — q) for
any ¢, Question [4.12]is asking if Béz(f) =1 mod (f(x) — ¢, f(y) — ¢) for all ¢.

We include a basic Sage script [McK21| that takes as input a matrix A and a k-rational
point ¢ € A? and returns as output Jac(f4 — q) and Béz(fa — q) of the corresponding
Druzkowski morphism f4. This script is based off of code written jointly with Thomas
Brazelton and Sabrina Pauli for computing the A'-degree via the Bézoutian [BMP21a].
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