BOUNDING THE SIGNED COUNT OF REAL BITANGENTS TO PLANE QUARTICS

MARIO KUMMER AND STEPHEN MCKEAN

Abstract

Using methods from enriched enumerative geometry, Larson and Vogt gave a signed count of the number of real bitangents to real smooth plane quartics. This signed count depends on a choice of a distinguished line. Larson and Vogt proved that this signed count is bounded below by 0 , and they conjectured that the signed count is bounded above by 8 . We prove this conjecture using real algebraic geometry, plane geometry, and some properties of convex sets.

1. Introduction

In this note, we prove an upper bound to the signed count of real bitangents to real smooth plane quartics introduced by Larson and Vogt [LV21. Using tools from \mathbb{A}^{1} enumerative geometry (also called quadratic or enriched enumerative geometry), Larson and Vogt define the sign QType $_{L}(B)$ (relative to an auxiliary line $L \subset \mathbb{P}^{2}$) of a bitangent B to a real smooth plane quartic Q. They then define the signed count

$$
s_{L}(Q):=\sum_{B \text { real bitangent }} \text { QType }_{L}(B) .
$$

If $L \cap Q(\mathbb{R})=\varnothing$, then $s_{L}(Q)=4$ [VV21, Theorem 1]. In general, $s_{L}(Q)$ is a nonnegative even integer [LV21, Proposition 4.3]. Larson and Vogt give examples of lines and quartics such that $s_{L}(Q)=0,2,4,6$, and 8 . This leads to the conjecture that $s_{L}(Q) \in\{0,2,4,6,8\}$ for any choice of line and quartic [LV21, Conjecture 2]. Using tools from tropical geometry, Markwig, Payne, and Shaw give a tropical criterion for quartics that satisfy $s_{L}(Q) \in\{0,2,4\}$ [MPS22, Theorem 5.2].

We gather a few ideas from real algebraic geometry and plane geometry to prove $s_{L}(Q) \leq$ 8 for any choice of plane quartic and auxiliary line. Paired with Larson and Vogt's lower bound and examples, it follows that $s_{L}(Q) \in\{0,2,4,6,8\}$.

Theorem 1.1. Let $Q \subset \mathbb{P}^{2}$ be a real smooth plane quartic. For any admissible line L, the signed count $s_{L}(Q)$ is at most 8. In particular, $s_{L}(Q) \in\{0,2,4,6,8\}$.

Acknowledgements. MK has been supported by the Deutsche Forschungsgemeinschaft under Grant No. 502861109. SM received support from an NSF MSPRF grant (DMS2202825).

[^0]
2. A few results on plane geometry and convex sets

In this section, we collect a few results on plane geometry and convex sets that we will need to prove Theorem 1.1.

Lemma 2.1. Let $K \subset \mathbb{R}^{n}$ a compact set and $L \subset \mathbb{R}^{n}$ a line. If $|L \cap K| \geq 2$, then $|L \cap \partial K| \geq 2$.

Proof. We identify L with the real line \mathbb{R}. Then $L \cap K$ is a compact subset of \mathbb{R} with at least two elements. In particular, its minimum and maximum are different points on the boundary of $L \cap K$. Thus L intersects the boundary of K in at least two points.

Corollary 2.2. Let $K \subset \mathbb{R}^{n}$ a compact set and $L \subset \mathbb{R}^{n}$ a line. If $L \cap K^{\circ} \neq \varnothing$, then $|L \cap \partial K| \geq 2$.

Proof. The condition $L \cap K^{\circ} \neq \varnothing$ implies that $|L \cap K|=\infty$, so we can apply the previous lemma.

Corollary 2.3. Let $I \subset \mathbb{R}^{2}$ be a line segment with endpoints a and b. Let $C \subset \mathbb{R}^{2}$ be a Jordan arc with endpoints a and b. Assume that $|I \cap C|$ is finite. Then any line $L \subset \mathbb{R}^{2}$ that meets I also meets C.

Proof. Let $\varphi:[s, t] \rightarrow \mathbb{R}^{2}$ an injective continuous map with $\varphi\left(t_{0}\right)=a$ and $\varphi\left(t_{1}\right)=b$ whose image is C. Let $s=t_{0}<\cdots<t_{m}=t$ such that $\varphi^{-1}(I \cap C)=\left\{t_{0}, \ldots, t_{m}\right\}$. Choose $0 \leq i<m$ such that L intersects the line segment I^{\prime} with end points $\varphi\left(t_{i}\right)$ and $\varphi\left(t_{i+1}\right)$. By replacing I by I^{\prime} and C by $\varphi\left(\left[t_{i}, t_{i+1}\right]\right)$ we can restrict to the case that $I \cap C$ consists of the endpoints of I only. This means that $I \cup C$ is a Jordan curve. Without loss of generality we may assume L intersects I transversely in exactly one point and that this point is not on C. This implies that L intersects the interior (in the sense of the Jordan curve theorem) of the Jordan curve $I \cup C$ whose compact closure we denote by K. By Corollary $2.2 L$ intersects $\partial K=I \cup C$ in at least two points. Thus $L \cap C \neq \varnothing$ because $|I \cap L|=1$.

Lemma 2.4. Let $K \subset \mathbb{R}^{n}$ a compact convex set and $L \subset \mathbb{R}^{n}$ a line. If $L \cap K^{\circ} \neq \varnothing$, then $|L \cap \partial K|=2$.

Proof. By assumption $L \cap K$ is a line segment spanned by two different boundary points v and w of K and there is some u on $L \cap K^{\circ}$. Let $u \in U \subset K$ an open neighbourhood of u in K. It remains to show that every point u^{\prime} on $L \cap K$ other than v, w is in the interior of K. Without loss of generality, we can assume that u^{\prime} is in the line segment spanned by v and u. Thus $u^{\prime}=\mu v+(1-\mu) u$ for some $0 \leq \mu<1$. The set

$$
U^{\prime}=\{\mu v+(1-\mu) x \mid x \in U\}
$$

is then an open neighbourhood of u^{\prime} in K.

Lemma 2.5. Let $Q \subset \mathbb{R}^{2}$ a convex quadrilateral. A line that intersects Q intersects at least two of its edges.

Proof. Let L be a line that intersects Q. If L contains a vertex of Q, then it intersects the two edges that contain this vertex. Thus assume that L does not contain a vertex of Q. This implies that L intersects the interior of Q and that it intersects each edge in at most one point. By Lemma 2.4 it intersects the boundary of Q, which is the union of all edges, in two points. This implies the claim.

Lemma 2.6. Let $Q \subset \mathbb{R}^{2}$ a convex quadrilateral. Let L be a line that intersects both diagonals of Q. Then L intersects two opposite edges of Q.

Proof. First consider the case that L does not intersect the interior of Q. Then L intersects Q either in a single vertex or in an entire edge. In the former case L intersects only one diagonal of Q. In the latter case L intersects opposite edges.

Now assume that L intersect the interior of Q. Then by Lemma 2.4 the line L intersects the boundary of Q in exactly two different points P_{1} and P_{2}. First assume that P_{1} is a vertex of Q. Then P_{2} cannot lie on an edge E that contains P_{1} because then L intersects the interior of Q. Thus L intersects Q in at least three edges and therefore in particular in two opposite edges.

Finally assume that P_{1} and P_{2} both are not a vertex of Q. Then P_{1} and P_{2} lie on two different edges E_{1} and E_{2}. Assume for the sake of a contradiction that E_{1} and E_{2} are not opposite. Then the convex hull of $E_{1} \cup E_{2}$ is a triangle T with edges E_{1}, E_{2} and D where D is a diagonal of Q. Because L does not intersect any vertex of T, it intersects the interior of T. Therefore, the two points P_{1} and P_{2} are the only intersection points of L with the boundary of T by Lemma 2.4. In particular, our line L does not intersect D.

Lemma 2.7. Let $Q \subset \mathbb{R}^{2}$ be a convex quadrilateral. Let $E, E^{\prime} \subset \partial Q$ be two opposite edges of Q. Let x be the intersection of the diagonals of Q. Then the set of points that lie on some line passing through E and E^{\prime} is equal to the union of Q and the set of points that lie on some line passing through E and x (see Figure 1).

Proof. Since Q is the convex hull of its four vertices, it is also the convex hull of E and E^{\prime}. Thus the latter set is contained in the former and it remains to show that if a point $y \in \mathbb{R}^{2} \backslash Q$ lies on a line L through E and E^{\prime}, then y lies on a line through E and x.

Let L^{\prime} be the line through x and y. We will show that $L^{\prime} \cap E$ is nonempty. By assumption, L^{\prime} passes through x and hence both diagonals of Q. Thus if $L^{\prime} \cap E=\varnothing$, then Lemma 2.6 implies that L^{\prime} passes through the other pair of opposite edges of Q. Thus L and L^{\prime} meet complementary pairs of opposite edges of Q, so L and L^{\prime} must intersect within Q. But $y \in L \cap L^{\prime}$ lies outside Q by assumption. We thus either contradict this assumption or find that $\left|L \cap L^{\prime}\right| \geq 2$, another contradiction.

Figure 1. Support of lines through opposite edges of a quadrilateral

3. Proving the conjecture

Let $Q \subset \mathbb{P}^{2}$ a real smooth plane quartic curve. We say that a real line $L \subset \mathbb{P}^{2}$ is admissible if it is disjoint from $Q \cap B$ for every real bitangent B of Q. The QType [LV21, Definition 1.2] of a real bitangent B is the sign by which B should be counted.

Definition 3.1. Let $f \in \mathbb{R}\left[x_{0}, x_{1}, x_{2}\right]$ be a homogeneous degree 4 polynomial such that $\mathbb{V}(f)=Q$. Let B be a bitangent to Q, and denote $Q \cap B=2 Z$ for $Z=z_{1}+z_{2}$ a degree 2 divisor. Let L be an admissible real line. Denote by ∂_{L} a derivation with respect to a linear form vanishing along L. The QType of B with respect to L is defined to be

$$
\operatorname{QType}_{L}(B):=\operatorname{sign}\left(\partial_{L} f\left(z_{1}\right) \cdot \partial_{L} f\left(z_{2}\right)\right) \in\{+1,-1\}
$$

By [LV21, Equ. (6)] a real bitagent can have negative QType only if it intersects Q in real points only. In this case we say that the bitangent is split. Geometrically, a split bitangent B has QType +1 if all connected components of $Q(\mathbb{R})$ that it meets lie in the same component of $\mathbb{R}^{2} \backslash B$ and QType -1 if it separates the connected components of $Q(\mathbb{R})$ that it meets (see Lemma 3.6). Here we identify $\mathbb{R}^{2}=\left(\mathbb{P}^{2} \backslash L\right)(\mathbb{R})$.

Remark 3.2. A priori, $\operatorname{QType}_{L}(B)$ depends on the choice of the polynomial f cutting out Q, as well as on the choice of linear form ℓ determining ∂_{L}. However, changing either of these choices changes both $\partial_{L} f\left(z_{i}\right)$ by the same non-zero scalar. This shows that $\operatorname{sign}\left(\partial_{L} f\left(z_{1}\right) \cdot \partial_{L} f\left(z_{2}\right)\right)$ is well-defined.

For an admissible line $L \subset \mathbb{P}^{2}$ let

$$
s_{L}(Q):=\sum_{B \text { real bitangent }} \operatorname{QType}_{L}(B)
$$

denote the signed count (relative to L) of bitangents.
Definition 3.3. Let $L \subset \mathbb{P}^{2}$ a real line and B a split bitangent such that $B \cap L \cap Q=\varnothing$. The grate $g_{L}(B)$ of B with respect to L is the convex hull of $B \cap Q$ in $\mathbb{R}^{2}=\left(\mathbb{P}^{2} \backslash L\right)(\mathbb{R})$. We say that the grate of B is positive resp. negative if $\operatorname{QType}_{L}(B)=+1$ or $\operatorname{QType}_{L}(B)=-1$ respectively.

The statement of the next lemma can be found in [LV21, p. 15].
Lemma 3.4. Let B be a split bitangent and L_{1}, L_{2} two real lines with $B \cap L_{i} \cap Q=\varnothing$ for $i=1,2$. Then one has

$$
\operatorname{QType}_{L_{2}}(B)= \begin{cases}\operatorname{QType}_{L_{1}}(B) & \text { if } L_{2} \cap g_{L_{1}}(B)=\varnothing \\ -\operatorname{QType}_{L_{1}}(B) & \text { if } L_{2} \cap g_{L_{1}}(B) \neq \varnothing\end{cases}
$$

From this one can deduce the following, which is [LV21, Equ. (7)].
Lemma 3.5. Let $L, L^{\prime} \subset \mathbb{P}^{2}$ two admissible lines. For $\epsilon \in\{ \pm 1\}$ we denote by $\sigma\left(L, L^{\prime}, \epsilon\right)$ the number of split bitangents B with $\mathrm{QType}_{L}(B)=\epsilon$ such that L^{\prime} intersects $g_{L}(B)$. Then

$$
s_{L^{\prime}}(Q)=s_{L}(Q)-2 \cdot\left(\sigma\left(L, L^{\prime},+1\right)-\sigma\left(L, L^{\prime},-1\right)\right)
$$

From now on we fix an admissible line L_{0} which is disjoint from $Q(\mathbb{R})$. By [LV21, Theorem 1] we have $s_{L_{0}}(Q)=4$. Thus for any admissible line L we have that $s_{L}(Q)$ is even by Lemma 3.5. Since by [LV21, Proposition 4.3] we also have $s_{L}(Q) \geq 0$, it only remains to show that $s_{L}(Q) \leq 8$. By Lemma 3.5 this is equivalent to proving that

$$
\begin{equation*}
\sigma\left(L_{0}, L,-1\right)-\sigma\left(L_{0}, L,+1\right) \leq 2 \tag{3.1}
\end{equation*}
$$

The general strategy proceeds in two cases. First, if our quartic has at most 8 real bitangents, then Theorem 1.1 is trivially true. Second, in the case that Q has more than 8 real bitangents, we will, for each two connected components Q_{1}, Q_{2} of $Q(\mathbb{R})$, study the split bitangents meeting Q_{1} and Q_{2} separately. We first show that there are exactly two positive and two negative grates connecting Q_{1} and Q_{2}. We will then show that if a line meets among those four grates more negative grates than positive grates, it must meet Q_{1} and Q_{2}. By Bézout's theorem, this line does not meet any other components of $Q(\mathbb{R})$. This yields the desired upper bound.

To begin, we characterize split bitangents determining negative grates as those separating a pair of connected components of $Q(\mathbb{R})$.

Lemma 3.6. Let B be a split bitangent and L a real line with $L \cap B \cap Q=\varnothing$. Let V_{1}, V_{2} the closures of the two connected components of $\left(\mathbb{P}^{2} \backslash(L \cup B)\right)(\mathbb{R})$. Then every connected component of $Q(\mathbb{R})$ is contained in V_{1} or in V_{2}. We have $\mathrm{QType}_{L}(B)=-1$ if and only if B intersects a connected component contained in V_{1} and one contained in V_{2}.

Proof. It is clear that if B intersects Q in only one point, then $\operatorname{QType}_{L}(B)=+1$. Thus we may assume that B intersects $Q(\mathbb{R})$ in two distinct points z_{1} and z_{2}. Let $P \in\left(\mathbb{P}^{2} \backslash L\right)(\mathbb{R})$ any point that is not contained in the interior of any oval of $Q(\mathbb{R})$ (i.e. P is contained in the non-orientable connected component of $\left(\mathbb{P}^{2} \backslash Q\right)(\mathbb{R})$). We identify \mathbb{R}^{2} with $\left(\mathbb{P}^{2} \backslash L\right)(\mathbb{R})$ and let F a polynomial on \mathbb{R}^{2} defining Q. Without loss of generality we can assume that $F(P)<0$. Then the normal vector of Q at z_{i}, which is the gradient of F at z_{1}, points towards the interior of the component Q_{i} containing z_{i}. Thus the
normal vectors at z_{1} and z_{2} point towards different connected components of $\mathbb{R}^{2} \backslash B$ if and only if V_{1} and V_{2} each contain one of the components Q_{1} and Q_{2}.

Corollary 3.7. Let L be a split bitangent to a real smooth plane quartic Q. If L only meets one connected component of $Q(\mathbb{R})$, then the grate associated to L is positive.

Proof. By Lemma 3.6, the QType of a split bitangent can only be negative if the split bitangent meets two distinct connected components of $Q(\mathbb{R})$.

We may thus restrict our attention to split bitangents meeting two distinct connected components of $Q(\mathbb{R})$. Let s be the number of connected components of $Q(\mathbb{R})$ and let $a=1$ if $Q(\mathbb{C}) \backslash Q(\mathbb{R})$ is connected and $a=0$ otherwise. By Harnack's theorem one has $0 \leq s \leq 4$. If $s=4$, then $a=0$ and if $s=0$, then $a=1$. Finally, if s is odd, then $a=1$ [GH81, Prop. 3.1]. The total number of real bitangents equals $4 \cdot\left(2^{s-1}-1+a\right)$ if $s>0$ and 4 if $s=0$ [GH81, Prop. 5.1]. This implies in particular that if $s<3$ there are not more than 8 real bitangents. Thus we can further restrict our attention to the case $s \geq 3$. Then the next lemma shows that there are always four bitangents meeting any pair of two distinct connected components. Moreover, these four split bitangents determine two positive grates and two negative grates.

Lemma 3.8. Assume that $s \geq 3$. Let Q_{1}, Q_{2} be two distinct connected components of $Q(\mathbb{R})$. The following are true:
(a) There are exactly four split bitangents that meet both Q_{1} and Q_{2}.
(b) With respect to L_{0} the four split bitangents meeting Q_{1} and Q_{2} determine two positive grates G_{1}^{+}, G_{2}^{+}and two negative grates G_{1}^{-}, G_{2}^{-}.
(c) The two positive grates G_{1}^{+}, G_{2}^{+}are edges of the convex hull of $Q_{1} \cup Q_{2}$.
(d) The two negative grates G_{1}^{-}, G_{2}^{-}intersect.

Proof. Let Q_{1}, \ldots, Q_{s} the connected components of $Q(\mathbb{R})$. We first claim that there is a line L_{1} which does not intersect $Q(\mathbb{R})$ such that Q_{1} and Q_{2} are contained in two different connected components of $\left(\mathbb{P}^{2} \backslash\left(L_{0} \cup L_{1}\right)\right)(\mathbb{R})$. Let ω_{0} be a linear form whose zero set is L_{0}. Since Q is embedded canonically, we can regard ω_{0} as a holomorphic differential on Q which has no real zeros. As such it induces an orientation Ω_{0} of $Q(\mathbb{R})$. Kum19, Cor. 2.2] says that every but at most one orientation of $Q(\mathbb{R})$ which agrees on Q_{1} with Ω_{0} is induced by a holomorphic differential on Q without real zeros. Since $s \geq 3$ there are at least two orientations on $Q(\mathbb{R})$ that agree on Q_{1} with Ω_{0} but differ from Ω_{0} on Q_{2}. Thus at least one of them is induced by a holomorphic differential ω_{1} without real zeros. This means that the rational function $\frac{\omega_{0}}{\omega_{1}}$ is positive on Q_{1} and negative on Q_{2}. Thus Q_{1} and Q_{2} are contained in two different connected components of $\left(\mathbb{P}^{2} \backslash\left(L_{0} \cup L_{1}\right)\right)(\mathbb{R})$ where L_{1} is the line defined as the zeros set of ω_{1} regarded as linear form on \mathbb{P}^{2}.

Now we consider $Q(\mathbb{R})$ as a subset of $\mathbb{R}^{2}=\left(\mathbb{P}^{2} \backslash L_{0}\right)(\mathbb{R})$. We have shown that the components Q_{1} and Q_{2} are strictly separated by the line L_{1} in \mathbb{R}^{2}. Thus we can apply

Figure 2. Grates meeting two components

Kum19, Prop. 3.2] to the convex hulls of Q_{1} and Q_{2} which shows that there are (up to a nonzero scalar multiple) exactly two affine linear functions that are nonnegative on $Q_{1} \cup Q_{2}$ but zero in at least one point on each Q_{1} and Q_{2}. Thus there are exactly two split bitangents B with $\operatorname{QType}(B)=+1$ that meet both Q_{1} and Q_{2}. Their grates are necessarily edges of the convex hull of $Q_{1} \cup Q_{2}$.

For proving $(a),(b)$ and (c) it remains to show that the total number of real bitangents meeting Q_{1} and Q_{2} is four. Recall that a semi-orientation is an equivalence class of orientations modulo global reversion. Thus there are exactly 2^{s-1} semiorientations on $Q(\mathbb{R})$. First consider the case $s=3$. Then we necessarily have $a=1$ and Kum23, Thm. 6.9] says that the number of real bitangents which meet Q_{1} and Q_{2} is the same as the number of semi-orientations on $Q(\mathbb{R})$. Since $s=3$, there are four semi-orientations which implies the claim. Now consider the case $s=4$. Then we necessarily have $a=0$ and [Kum23, Thm. 6.11] says that the number of real bitangents which meet Q_{1} and Q_{2} is the same as the number of semi-orientations on $Q(\mathbb{R})$ that restrict to a certain fixed semi-orientation on $Q_{3} \cup Q_{4}$. Since $s=4$, there are four such semi-orientations which implies the claim.

For part (d) let α_{i} be a linear form whose zero set is the bitangent B_{i} such that $g_{L_{0}}\left(B_{i}\right)=$ G_{i}^{-}for $i=1,2$. Since QType $_{L_{0}}\left(B_{i}\right)=-1$, we have by Lemma 3.6 that Q_{1} and Q_{2} are contained in the closure of different connected components of $\left(\mathbb{P}^{2} \backslash\left(L_{0} \cup B_{i}\right)\right)(\mathbb{R})$. After replacing α_{i} by $-\alpha_{i}$ if necessary, we can thus assume that $\frac{\alpha_{i}}{\omega_{0}}$ is nonnegative on Q_{1} and nonpositive on Q_{2}. Thus $\frac{\alpha_{1}}{\alpha_{2}}$ is nonnegative on $Q_{1} \cup Q_{2}$. This shows that Q_{1} and Q_{2} are contained in the closure of the same connected component of $\left(\mathbb{P}^{2} \backslash\left(B_{1} \cup B_{2}\right)\right)(\mathbb{R})$ which implies QType $B_{B_{1}}\left(B_{2}\right)=+1$ and QType $B_{B_{2}}\left(B_{1}\right)=+1$. By Lemma 3.4 and because $\operatorname{QType}_{L_{0}}\left(B_{i}\right)=-1$ for $i=1,2$, this shows that $B_{1} \cap g_{L_{0}}\left(B_{2}\right) \neq \varnothing$ and $B_{2} \cap g_{L_{0}}\left(B_{1}\right) \neq \varnothing$. Since B_{1} and B_{2} intersect in exactly one point, we must have $g_{L_{0}}\left(B_{1}\right) \cap g_{L_{0}}\left(B_{2}\right) \neq \varnothing$.

Given two connected components Q_{1}, Q_{2} of $Q(\mathbb{R})$, we will consistently denote by G_{1}^{+}, G_{2}^{+} and G_{1}^{-}, G_{2}^{-}the positive and negative grates, respectively, determined by the split bitangents meeting both Q_{1} and Q_{2}.

Each split bitangent of Q_{1}, Q_{2} that determines a negative grate intersects each split bitangent that determines a positive grate. In fact, these intersections occur within the positive grates.

Lemma 3.9. Let B_{1}, B_{2} be the split bitangents containing G_{1}^{-}, G_{2}^{-}. Then $\left|B_{i} \cap G_{j}^{+}\right|=1$ for $i, j \in\{1,2\}$.

Proof. Any two bitangents to Q are distinct, so we just need to show that $\left|B_{i} \cap G_{j}^{+}\right|>0$. We will call a split bitangent positive (respectively negative) if it determines a positive (respectively negative) grate. Each positive grate touches each Q_{i} once, so the region R between the positive grates and $Q_{1} \cup Q_{2}$ is bounded by the Jordan curve theorem. The negative bitangents cannot cross the components Q_{i}, so the negative bitangents can only enter or exit R through the positive grates.

By Lemma 3.6, a split bitangent L meeting two components Q_{1}, Q_{2} is negative if the regions bounded by Q_{1} and Q_{2} lie in different components of $\mathbb{R}^{2} \backslash L$. In particular, a negative bitangent passes through the interior of the convex hull K of $Q_{1} \cup Q_{2}$. By Lemma $2.4,\left|B_{i} \cap \partial K\right|=2$. The boundary ∂K consists of the positive grates G_{1}^{+}, G_{2}^{+}, and two other boundary components that are separated by the line segments S_{i} connecting $G_{1}^{+} \cap Q_{i}$ and $G_{2}^{+} \cap Q_{i}$ (see Figure 3). Since L cannot cross Q_{i}, negative bitangents cannot cross S_{i} and hence $B_{i} \cap \partial K \subset G_{1}^{+} \cup G_{2}^{+}$. Thus $\left|B_{i} \cap G_{1}^{+}\right|+\left|B_{i} \cap G_{2}^{+}\right|=2$, so $\left|B_{i} \cap G_{j}^{+}\right|=1$.

As a corollary, we find that the negative grates are contained in the interior of the convex hull of the positive grates.

Corollary 3.10. The negative grates G_{1}^{-}, G_{2}^{-}are contained in the convex hull of $G_{1}^{+} \cup G_{2}^{+}$.

Proof. Lemma 3.9 states that the split bitangents containing G_{1}^{-}and G_{2}^{-}intersect the positive grates, so G_{1}^{-}, G_{2}^{-}are contained in the convex hull of $G_{1}^{+} \cup G_{2}^{+}$.

Lemma 3.11. Let Q_{0} a connected component of $Q(\mathbb{R}) \subset \mathbb{R}^{2}=\left(\mathbb{P}^{2} \backslash L_{0}\right)(\mathbb{R})$. Let $a, b \in Q_{0}$ two different points and S the line segment spanned by a and b. If a line intersects S, then it intersects Q_{0}.

Proof. Let J the closure of one of the two connected components of $Q_{0} \backslash\{a, b\}$. This is a Jordan arc with the same endpoints as S. Thus by Corollary 2.3, any line meeting S also meets $J \subset Q_{0}$.

We now show that if a line meets a negative grate, it meets at least two of $Q_{1}, Q_{2}, G_{1}^{+}, G_{2}^{+}$.

Lemma 3.12. Let $L \subset \mathbb{P}^{2}$ be an admissible line. If L meets one of the negative grates of Q_{1}, Q_{2}, then L meets at least two of $Q_{1}, Q_{2}, G_{1}^{+}, G_{2}^{+}$.

Figure 3. Quadrilateral from positive grates
Proof. Let R be the convex hull of $G_{1}^{+} \cup G_{2}^{+}$. Note that R is a convex quadrilateral with edges S_{1}, S_{2}, G_{1}^{+}and G_{2}^{+}, where S_{i} is the line segment connecting $G_{1}^{+} \cap Q_{i}$ and $G_{2}^{+} \cap Q_{i}$ (see Figure 3). If L meets a negative grate, then L meets at least two edges of R by Lemma 2.5. By Lemma 3.11 any line meeting S_{i} also meets Q_{i}. Thus if L meets at least two of $S_{1}, S_{2}, G_{1}^{+}, G_{2}^{+}$, then L meets at least two of $Q_{1}, Q_{2}, G_{1}^{+}, G_{2}^{+}$.

As a final ingredient, we show that if a line meets both negative grates, it meets either both Q_{1} and Q_{2} or both G_{1}^{+}and G_{2}^{+}.

Lemma 3.13. Let $L \subset \mathbb{P}^{2}$ be an admissible line. Assume that L meets both G_{1}^{-}and G_{2}^{-}. Then either L meets both Q_{1} and Q_{2}, or L meets both G_{1}^{+}and G_{2}^{+}.

Proof. See Figure 4 for an illustration of some of the objects appearing in this proof. Let R be the convex hull of $G_{1}^{-} \cup G_{2}^{-}$. The negative grates intersect (necessarily within R°) by Lemma 3.8, which implies that the negative grates G_{1}^{-}, G_{2}^{-}are the diagonals of the convex quadrilateral R. Let

- E be the line segment connecting $G_{1}^{-} \cap Q_{1}$ and $G_{2}^{-} \cap Q_{2}$,
- E^{\prime} be the line segment connecting $G_{1}^{-} \cap Q_{2}$ and $G_{2}^{-} \cap Q_{1}$,
- F be the line segment connecting $G_{1}^{-} \cap Q_{1}$ and $G_{2}^{-} \cap Q_{1}$, and
- F^{\prime} be the line segment connecting $G_{1}^{-} \cap Q_{2}$ and $G_{2}^{-} \cap Q_{2}$.

These are the four edges of R and by Lemma 2.6, L either passes through both E, E^{\prime} or through both F, F^{\prime}. If L passes through both F and F^{\prime}, then by Lemma $3.11 L$ also intersects Q_{1} and Q_{2}.
Now suppose that L passes through both E and E^{\prime}. Let $x=G_{1}^{-} \cap G_{2}^{-}$be the intersection of the diagonals of R. Let X be the set of all points lying on some line through x and E. Since L intersects E, E^{\prime}, Lemma 2.7 implies that L is contained in $X \cup R$. By Lemma 3.9, the positive grates G_{1}^{+}, G_{2}^{+}bound the quadrilateral R within $X \cup R$. Any line in $X \cup R$ must pass through this bounded portion, so L must pass through G_{1}^{+}and G_{2}^{+}.

We can now prove Theorem 1.1.

Figure 4. Meeting two negative grates

Proof of Theorem 1.1. Recall that we are trying to show that

$$
\sigma\left(L_{0}, L,-1\right)-\sigma\left(L_{0}, L,+1\right) \leq 2
$$

where L_{0} is a line disjoint from $Q(\mathbb{R})$ and L is any admissible line (see inequality 3.1). In other words, we want to show that any admissible line can meet at most 2 more negative grates than positive grates. Let $Q_{1}, \ldots, Q_{s} \subset Q(\mathbb{R})$ be the $s \geq 3$ distinct connected components. For $1 \leq i<j \leq s$ and $\epsilon \in\{ \pm 1\}$ we denote by $\sigma_{i j}\left(L_{0}, L, \epsilon\right)$ the number of split bitangents B with QType $_{L_{0}}(B)=\epsilon$ such that L intersects $g_{L_{0}}(B)$ and such that B intersects both Q_{i} and Q_{j}. Further let $\sigma_{i j}\left(L_{0}, L\right)=\sigma_{i j}\left(L_{0}, L,-1\right)-\sigma_{i j}\left(L_{0}, L,+1\right)$. By Corollary 3.7 we have

$$
\begin{equation*}
\sigma\left(L_{0}, L,-1\right)-\sigma\left(L_{0}, L,+1\right) \leq \sum_{1 \leq i<j \leq s} \sigma_{i j}\left(L_{0}, L\right) \tag{3.2}
\end{equation*}
$$

For each $i \neq j$, let $G_{i j}^{+}, G_{i j}^{\prime+}$ be the positive grates and $G_{i j}^{-}, G_{i j}^{\prime-}$ be the negative grates associated to Q_{i} and Q_{j}. We have $\sigma_{i j}\left(L_{0}, L\right)>0$ only if
(i) L meets exactly one of $G_{i j}^{-}, G_{i j}^{\prime-}$ and neither of $G_{i j}^{+}, G_{i j}^{\prime+}$, or
(ii) L meets both $G_{i j}^{-}, G_{i j}^{\prime-}$ and at most one of $G_{i j}^{+}, G_{i j}^{\prime+}$.

In case (i), L meets both Q_{i} and Q_{j} by Lemma 3.12. In case (ii), L meets both Q_{i} and Q_{j} by Lemma 3.13. Thus any case $\sigma_{i j}\left(L_{0}, L\right)>0$ only if L meets both Q_{i} and Q_{j}.

However L can meet at most two of Q_{1}, \ldots, Q_{s}. Indeed, if $L \cap Q_{i}$ is nonempty, then either L is tangent to Q_{i} (and hence meets Q_{i} with multiplicity at least 2) or L passes through the region bounded by Q_{i} (and hence intersects Q_{i} at least twice). Thus L is either disjoint from Q_{i} or meets Q_{i} with multiplicity at least 2 , so Bézout's theorem implies that L meets at most two connected components of $Q(\mathbb{R})$. Therefore, at most one summand on the right-hand side of Equation 3.2 is positive. Furthermore, by Lemma 3.8 we have $\sigma_{i j}\left(L_{0}, L,-1\right) \leq 2$ and thus $\sigma_{i j}\left(L_{0}, L\right) \leq 2$ for all $1 \leq i<j \leq s$. This gives the desired upper bound of 2 .

References

[GH81] Benedict H. Gross and Joe Harris. Real algebraic curves. Ann. Sci. École Norm. Sup. (4), 14(2):157-182, 1981.
[Kum19] Mario Kummer. Totally real theta characteristics. Ann. Mat. Pura Appl. (4), 198(6):21412150, 2019.
[Kum23] Mario Kummer. A signed count of 2-torsion points on real abelian varieties. arXiv preprint arXiv:2301.10621, 2023.
[LV21] Hannah Larson and Isabel Vogt. An enriched count of the bitangents to a smooth plane quartic curve. Res. Math. Sci., 8(2):Paper No. 26, 21, 2021.
[MPS22] Hannah Markwig, Sam Payne, and Kris Shaw. Bitangents to plane quartics via tropical geometry: rationality, \mathbb{A}^{1}-enumeration, and real signed count. 2022.

Fakultät Mathematik, Institut für Geometrie, Technische Universität Dresden
Email address: mario.kummer@tu-dresden.de
URL: tu-dresden.de/mn/math/geometrie/kummer/startseite/

Department of Mathematics, Harvard University
Email address: smckean@math.harvard.edu
URL: shmckean.github.io

[^0]: 2020 Mathematics Subject Classification. Primary:

