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Abstract. For each configuration of rational points on the affine line, we define an
operation on the group of unstable motivic homotopy classes of endomorphisms of the
projective line. We also derive an algebraic formula for the image of such an operation
under Cazanave and Morel’s unstable degree map, which is valued in an extension of
the Grothendieck–Witt group. In contrast to the topological setting, these operations
depend on the choice of configuration of points via a discriminant. We prove this by
first showing a local-to-global formula for the global unstable degree as a modified
sum of local terms. We then use an anabelian argument to generalize from the case
of local degrees of a global rational function to the case of an arbitrary collection of
endomorphisms of the projective line.

1. Introduction

In topology, May’s recognition principle characterizes loop spaces as algebras over the
little cubes operad [May72], which is defined by operations coming from configuration
spaces of Euclidean space. An analog of May’s recognition principle for P1-loop spaces
in unstable motivic homotopy theory has been sought for the last quarter century. We
offer some thoughts on this question by defining a family of operations

∑
D on the P1-

loop space ΩP1P1. We construct these operations in terms of the configuration space of
rational points in the affine line — indeed, the subscript D refers to such a configuration
of points. In contrast to the topological setting, these operations depend on the set of
points D via a sort of discriminant.

Let k be a field, and let D = {r1, . . . , rn} be a subset of A1
k(k) with ri ̸= rj for i ̸= j.

We define the D-pinch map (see Definition 4.2) as the composite

⋎D : P1
k

cD−→ P1
k

P1
k −D

∼=−→
n∨

i=1

P1
k

P1
k − {ri}

≃←−
n∨

i=1

P1
k,

where cD is the collapse map induced by the inclusion P1
k−D ↪→ P1

k, the second map is a
canonical isomorphism of motivic spaces resulting from purity, and the last equivalence is
a wedge of collapse maps coming from the inclusions P1

k−{ri} ↪→ P1
k. For endomorphisms

f1, . . . , fn : P1
k → P1

k in the unstable motivic homotopy category, we define the D-sum
(see Definition 4.4) to be ∑

D

(f1, . . . , fn) := ∨ifi ◦⋎D.
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Note that
∑

D(f1, . . . , fn) is again an endomorphism of the motivic space P1
k. Morel

proved that such endomorphisms can be understood in terms of quadratic forms: he
defined an analog of the Brouwer degree [Mor06], which is a morphism from the ring
of endomorphisms of the sphere Sn ∧ G∧n

m ≃ Pn
k/P

n−1
k to the Grothendieck–Witt ring

GW(k) of isomorphism classes of non-degenerate symmetric bilinear forms over a field
k. In dimensions 2 and greater, Morel’s degree map is an isomorphism. In dimension 1,
the degree is surjective but not injective. Morel [Mor12, Theorem 7.36] also computed

[P1
k,P1

k]
∼= GW(k)×k×/(k×)2 k

×,(1.1)

and Cazanave [Caz12] gave an explicit formula for this isomorphism. Let GWu(k) :=
GW(k)×k×/(k×)2 k

×, which we call the unstable Grothendieck–Witt group. Let

degu : [P1
k,P1

k]→ GWu(k)

denote the unstable degree. Our main theorem is a characterization of the D-sum in
terms of its image under degu.

Theorem 1.1. Let D = {r1, . . . , rn} ⊂ A1
k(k). For any unstable pointed A1-homotopy

classes of maps f1, . . . , fn ∈ [P1,P1], we have

degu(
∑
D

(f1, . . . , fn)) =
( n⊕

i=1

βi,
n∏

i=1

di ·
∏
i<j

(ri − rj)
2mimj

)
,

where (βi, di) = degu(fi) and mi = rank degu(fi) for each i.

The proof of Theorem 1.1 proceeds in two steps. The first step is to give a local-to-
global formula for the unstable A1-degree of a rational function. To this end, we develop
an unstable analog of the local A1-degree [KW19] and apply algebraic methods due to
Cazanave [Caz12]. As a result, we find that Theorem 1.1 holds when f1, . . . , fn represent
the unstable local degrees of a rational function whose vanishing locus is {r1, . . . , rn}.

Theorem 1.2. Let f/g be a pointed rational function with vanishing locus {r1, . . . , rn} ⊂
A1

k(k). For each i, let deguri(f/g) = (βi, di) and rank βi = mi. Then

(1.2) degu(f/g) =
( n⊕

i=1

βi,
n∏

i=1

di ·
∏
i<j

(ri − rj)
2mimj

)
.

Theorem 1.2 will serve as the base case of an induction argument for Theorem 1.1. While
carrying out this first step, we prove a few results that are of independent interest; we
will mention these momentarily.

The second step to proving Theorem 1.1 is an inductive argument that uses results of
Morel on the fundamental group sheaf πA1

1 (P1). Morel showed that P1 is anabelian in
A1-homotopy theory [Mor12, Remark 7.32], in the sense that the A1-fundamental group
yields a group isomorphism

[P1
k,P1

k]
∼= End(πA1

1 (P1
k)(k)).



MOTIVIC CONFIGURATIONS ON THE LINE 3

Here, we borrow the term anabelian from Grothendieck’s anabelian program in étale
homotopy theory [Gro97].

As previously mentioned, the first step of our proof of Theorem 1.1 involves defining the
unstable local A1-degree.

Definition 1.3. Let f : P1
k → P1

k be a pointed rational map. If x is a closed point such
that f(x) = 0, then the unstable local degree of f at x is the image degux(f) ∈ GWu(k)
of the map

P1
k →

P1
k

P1
k − {x}

→ P1
k

P1
k − {0}

≃ P1
k.

Here the last equivalence is the one given by the crushing map P1 → P1
k

P1
k−{0} . Theorem 1.2

can be thought of as a Poincaré–Hopf theorem relating the global unstable degree to its
local counterparts. We also give an explicit formula for the unstable local degree at
rational points in terms of a “higher residue.”

Theorem 1.4. Let f/g be a pointed rational function. Let r ∈ A1
k(k) be a root of f of

multiplicity m. Then there exists a ∈ k× such that

g(x)

f(x)
=

a

(x− r)m
+

∑
i>−m

ai(x− r)i,

and we have

degur (f) =


∗ ∗ · · · ∗ a
∗ ∗ · · · a 0
...

... ... ...
...

∗ a · · · 0 0
a 0 · · · 0 0


︸ ︷︷ ︸

m×m

.

1.1. Outline. We review some relevant terminology and notation in Section 2. In Sec-
tion 3, we define the unstable local A1-degree and derive an algebraic formula for it under
nice hypotheses. In Section 4, we define the D-sum

∑
D and prove that the unstable

A1-degree satisfies a local-to-global principle with respect to
∑

D.

We take a slight detour in Section 5, where we define a generalization of the polynomial
discriminant (which we call the duplicant). Code supporting our analysis of duplicants
can be found in Appendix A. Our aside on duplicants is utilized in Section 6, where we
prove Theorem 1.2 (as Proposition 6.5). Most of the techniques for this proof boil down
to (somewhat involved) linear algebra.

In Section 7, we prove Theorem 1.1 by proving the requisite details on πA1

1 (P1) and
setting up an induction argument with Theorem 1.2 as the base case.
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2. Terminology and notation

We will frequently work with pointed rational maps, which are rational functions f :
P1
k → P1

k such that f(∞) =∞. We will denote the unstable motivic homotopy category
of pointed spaces over a field k by H•(k). Given two pointed motivic spaces X and Y ,
we denote the set of pointed A1-homotopy classes of maps X → Y by [X, Y ]. We will
really only need to consider the case of X = Y = P1

k.

2.1. Unstable Grothendieck–Witt groups. Define the unstable Grothendieck–Witt
group

GWu(k) := GW(k)×k×/(k×)2 k
×.

We refer to the GW(k) and k× factors of GWu(k) as the stable and unstable parts,
respectively. The group structure on GWu(k) is given by (β1, b1)+(β2, b2) = (β1+β2, b1b2)
(or in words, by taking direct sums of the stable parts and multiplying the unstable
parts). We wish to describe GWu(k) in terms of generators and relations. To this end,
we recall the usual presentation of GW(k).

Proposition 2.1. Let k be a field. Given a ∈ k×, let ⟨a⟩ be the isomorphism class of
the bilinear form (x, y) 7→ axy. As a group, GW(k) is isomorphic to the group generated
by {⟨a⟩ : a ∈ k×} modulo the following relations:

(i) ⟨ab2⟩ = ⟨a⟩ for all a, b ∈ k×.

(ii) ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩ for all a, b ∈ k× such that a+ b ̸= 0.

(iii) ⟨a⟩+ ⟨−a⟩ = ⟨1⟩+ ⟨−1⟩ for all a ∈ k×.

Moreover, one recovers GW(k) as a ring by imposing the further relation:

(iv) ⟨a⟩⟨b⟩ = ⟨ab⟩ for all a, b ∈ k×.

Remark 2.2. Relations (i) and (ii) actually imply relation (iii). Because of its ubiquity,
we define the hyperbolic form H := ⟨1⟩+ ⟨−1⟩.

Following the stable case, we can give a presentation of the unstable Grothendieck–Witt
group in terms of generators and relations.

Proposition 2.3. Let k be a field. Given a ∈ k×, let ⟨a⟩u := (⟨a⟩, a) ∈ GWu(k). As
a group, GWu(k) is isomorphic to the group generated by {⟨a⟩u : a ∈ k×} modulo the
following relations:

(i’) ⟨ab2⟩u = ⟨a⟩u + ⟨b⟩u − ⟨1/b⟩u for all a, b ∈ k×.

(ii’) ⟨a⟩u + ⟨b⟩u = ⟨1/(a+ b)⟩u + ⟨ab(a+ b)⟩u for all a, b ∈ k× such that a+ b ̸= 0.
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Proof. By definition, each element of GWu(k) is of the form (β, d), where β ∈ GW(k)
and d ∈ k× such that d ≡ disc β mod (k×)2. Writing β =

∑n
i=1⟨ai⟩ −

∑m
j=1⟨bj⟩ in

GW(k), we have d = c2(
∏

i ai)(
∏

j b
−1
j ) for some c ∈ k×. Since

⟨c⟩u − ⟨1/c⟩u = (⟨c⟩, c)− (⟨1/c⟩, 1/c)
= (⟨c⟩, c)− (⟨c⟩, 1/c)
= (0, c2)

by Proposition 2.1 (i), we have (β, d) = ⟨c⟩u− ⟨1/c⟩u +
∑n

i=1⟨ai⟩u−
∑m

j=1⟨bj⟩u. That is,
GWu(k) is generated by elements of the form ⟨a⟩u.

There are no relations on GWu(k) imposed by the unstable factor k×, so we only need the
additive relations on the stable factor given in Proposition 2.1. Relation (i’) is precisely
Proposition 2.1 (i) when restricted to elements of the form ⟨a⟩u. For relation (ii’), we
have ⟨1/(a+b)⟩ = ⟨a+b⟩ in GW(k). It remains to check that the unstable factors agree,
which is merely the computation ab = 1

a+b
· ab(a+ b). □

Remark 2.4. If we present GW(k) as a ring, it turns out that Proposition 2.1 (i), (ii),
and (iv) imply relation (iii). Since we do not consider any ring structure on GWu(k), we
do not have an analog of Proposition 2.1 (iv) for Proposition 2.3. Consequently, there
is no relation analogous to Proposition 2.1 (iii) that needs to be imposed on GWu(k).
However, one can calculate that ⟨1/a⟩u+⟨−a⟩u = ⟨1⟩u+⟨−1⟩u for all a ∈ k×. We denote
this unstable hyperbolic form by Hu.

2.2. Bézoutians. We will briefly recall some details about univariate Bézoutians, which
provide an algebraic formula for the unstable degree by [Caz12].

Definition 2.5. Given a pointed rational function f/g : P1
k → P1

k, the Bézoutian poly-
nomial of f/g is defined to be

Béz(f/g) :=
f(X)g(Y )− f(Y )g(X)

X − Y
∈ k[X, Y ].

The Bézoutian matrix with respect to the monomial basis is the matrix
Bézmon(f/g) := (aij)

m
i,j=0,

where aij ∈ k are such that Béz(f/g) =
∑

i,j aijX
iY j.

Remark 2.6. The term monomial basis in Definition 2.5 refers to the monomial basis
{xi}i,j of the k-algebra Q(f/g) := k[x, 1

g
]/(f

g
). The Bézoutian can be viewed as an

element of Q(f/g)⊗k Q(f/g) under the isomorphism
Q(f/g)⊗k Q(f/g)→ k[X, Y, 1/g(X), 1/g(Y )]/(f(X)/g(X), f(Y )/g(Y ))

a(x)⊗ b(x) 7→ a(X)b(Y ).

The Bézoutian matrix with respect to the monomial basis is then the coefficient matrix
of the Bézoutian polynomial in the basis {X iY j}i,j.

We will also need another choice of basis for Q(f/g).
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Definition 2.7. Let f/g : P1
k → P1

k be a pointed rational function with rational root r
of order m. Consider the k-algebra

Qr(f/g) :=
k[x, 1/g](x−r)

(f, 1/g)
,

The local Newton basis of Qr(f/g) is the basis

BNwt
r (f/g) :=

{
f

g · (x− r)
,

f

g · (x− r)2
, . . . ,

f

g · (x− r)m

}
.

If all roots of f are k-rational, then we define the (global) Newton basis of Q(f/g) as

BNwt(f/g) :=
⋃

r∈f−1(0)

BNwt
r (f/g).

Remark 2.8. Any symmetric non-degenerate matrix M over a field k represents a
symmetric non-degenerate bilinear form over k. Given such a matrix M , we will also
denote the isomorphism class of the bilinear form that it represents by M ∈ GW(k).

Cazanave computes the unstable global degree in terms of the Bézoutian with respect
to the monomial basis [Caz12, Theorem 3.6].

Theorem 2.9 (Cazanave). There is a group isomorphism

degu : ([P1
k,P1

k],⊕N)gp → GWu(k)

given by degu(f/g) = (Bézmon(f/g), detBézmon(f/g)).

Here, the superscript gp denotes group completion (which is necessary, as the Bézoutian
bilinear form only realizes elements of non-negative rank). The symbol ⊕N is Cazanave’s
naïve sum, which is a monoid structure on the set [P1

k,P1
k]. We will recall the definition

of ⊕N in Definition 6.1 when it becomes more relevant for us.

Remark 2.10. Note that Béz(cf/cg) = c2Béz(f/g). This c2 factor does not cause any
inconsistencies in the stable setting, as ⟨c2⟩ = ⟨1⟩ in GW(k). However, this c2 factor
would cause (Bézmon(f/g), detBézmon(f/g)) to be ill-defined in GWu(k). To get a well-
defined Bézoutian, we therefore always normalize f/g so that f is monic. This is the
same convention used in [Caz12].

When f is a polynomial morphism, degu(f) is fully determined by the leading coefficient.
Our convention that f is monic forces degu(f) to scale inversely rather than directly:

Proposition 2.11. Let f(x) =
∑n

i=0 aix
i ∈ k[x]. Then degu(f) ∈ GWu(k) is presented

by any matrix of the form

(2.1)


∗ ∗ · · · ∗ a−1

n

∗ ∗ · · · a−1
n 0

...
... ... ...

...
∗ a−1

n · · · 0 0
a−1
n 0 · · · 0 0

 or


0 0 · · · 0 a−1

n

0 0 · · · a−1
n ∗

...
... ... ...

...
0 a−1

n · · · ∗ ∗
a−1
n ∗ · · · ∗ ∗

 .
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Proof. Because we normalize so that f is monic, we write f =
xn+

∑
i aia

−1
n xi

a−1
n

. One can

readily compute that Béz(x
n+

∑
i aia

−1
n xi

a−1
n

) = a−1
n

∑
i+j=n−1X

iY j+
∑n−1

ℓ=1 aℓa
−1
n

∑
i+j=ℓ−1X

iY j,
so the Bézoutian matrix with respect to the monomial basis is given by

Bézmon(f) =


a1a

−1
n a2a

−1
n · · · an−1a

−1
n a−1

n

a2a
−1
n a3a

−1
n · · · a−1

n 0
...

... ... ...
...

an−1a
−1
n a−1

n · · · 0 0
a−1
n 0 · · · 0 0

 .

The element of GW(k) determined by the matrix Bézmon(f) depends only on a−1
n (by

e.g. [KW20, Lemma 6]). Moreover, the determinant of any (anti)-triangular matrix is
determined by its diagonal, so any matrix of the form Equation 2.1 determines the same
class in GWu(k) as (Bézmon(f), detBézmon(f)). □

3. Unstable local degree

Following the stable setting, we will define the unstable local degree of a map of curves
at a closed point with rational image.

Setup 3.1. Let X and Y be curves over k. Let f : X → Y be a morphism. Assume
that x ∈ X is a closed point such that f(x) ∈ Y (k). Let U ⊆ X and V ⊆ Y be Zariski
open neighborhoods of x and f(x), respectively. Assume that x is isolated in its fiber,
so that (shrinking U and V as necessary) f defines a map

f̄x : U/(U − {x})→ V/(V − {f(x)}).
By excision, we can rewrite this as

f̄x : P1
k/(P1

k − {x})→ P1
k/(P1

k − {f(x)}) ≃ P1
k.

In order to obtain an element of [P1
k,P1

k], we precompose with the collapse map cx : P1
k →

P1
k/(P1

k − {x}).

Remark 3.2. Suppose that f has vanishing locus D = {x1, . . . , xn}. We can then form
the collapse map

cD : P1
k →

P1
k

P1
k −D

from the inclusion P1
k − D ↪→ P1

k. There is a canonical isomorphism P1
k/(P1

k − D) ∼=∨n
i=1 P1

k/(P1
k − {xi}) [Caz12, Lemma A.3]. The induced maps f̄xi

: P1
k/(P1

k − {xi})→ P1
k

are constructed such that the diagram

P1
k P1

k

∨
i

P1
k

P1
k−{xi}

P1
k

P1
k−D

cD

f

∨if̄xi

∼=

commutes.
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Definition 3.3. Assume the notation of Setup 3.1. The unstable local degree of f at x
is the image degux(f) ∈ GWu(k) of the composite f̄x ◦ cx under Cazanave’s isomorphism
(Equation 1.1). We will sometimes find it convenient to call degux(f) ∈ GWu(k) the
algebraic unstable local degree, in contrast to the homotopical unstable local degree
f̄x ◦ cx ∈ [P1

k,P1
k].

Note that if x is the only zero of f , then the unstable degree coincides with the unstable
local degree.

Proposition 3.4. Let f : P1
k → P1

k be a pointed rational map with f−1(0) = {x}.
Assume that x ∈ A1

k(k). Then degux(f) = degu(f).

Proof. By definition of the unstable local degree, it suffices to show that the diagram

(3.1)
P1
k P1

k/(P1
k − {x})

P1
k P1/(P1 − {0})

f

cx

f̄x

≃

commutes in H•(k). The commutativity of Diagram 3.1 is explained in Remark 3.2
(setting n = 1). □

Remark 3.5. Precomposition with the collapse map should be thought of as a transfer
c∗x : GWu(k(x)) → GWu(k), where k(x) is the residue field of x. When x is k-rational,
the collapse map is in fact a homotopy equivalence P1

k ≃ P1
k/(P1

k−{x}) of pointed motivic
spaces. Throughout this article, we will assume that x is k-rational. We will give an
analysis of the unstable transfer c∗x and the unstable local degree at non-rational points
in future work.

3.1. Algebraic formula for the unstable local degree. We now give two formulas
for the unstable local degree at rational points. The first formula assumes that we are
computing the unstable local degree at a simple zero, in which case the local degree is
given by the inverse of the derivative. This is the unstable analog of [KW19, Lemma 9].

Remark 3.6. We are working with pointed rational functions f/g, which means that
∞ ∈ P1

k is not a root of f . In other words, all roots of f lie in A1
k = P1

k − {∞}.

Proposition 3.7. Let f : P1
k → P1

k be a pointed rational map. Assume that x ∈ A1
k(k)

is a simple k-rational zero of f . Then degux(f) = ⟨f ′|−1
x ⟩u.

Proof. This is the unstable, k-rational version of [KW19, Proposition 15]. Because the
proof in loc. cit. makes use of the stable motivic homotopy category, we need to modify
the proof to hold in H•(k).

Because x is a simple zero of f (equivalently, f is étale at x), the induced map of
tangent spaces dfx : TxP1

k → f ∗Tf(x)P1
k is a monomorphism. Thus dfx induces a map
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Th(dfx) : Th(TxP1
k)→ Th(f ∗Tf(x)P1

k) of Thom spaces. Because x and f(x) are k-rational,
we have isomorphisms Th(TxP1

k)
∼= Th(OSpec k) ∼= Th(f ∗Tf(x)P1

k) in H•(k), which fit into
the commutative diagram

(3.2)
Th(TxP1

k) Th(f ∗Tf(x)P1
k)

Th(OSpec k) Th(OSpec k).

Th(dfx)

∼= ∼=
f ′|x

Here, f ′|x refers to the linear map z 7→ f ′|x · z. Note that f ′|x ∈ k× since f is étale at
x. The naturality of the purity isomorphism [Voe03, Lemma 2.1] yields a commutative
diagram

(3.3)

Th(TxU) Th(f ∗Tf(x)V )

P1
k

U
U−{x}

V
V−{f(x)} P1

k.

∼=

Th(dfx)

∼=

≃ f |U ≃

By stacking Diagrams 3.2 and 3.3, we find that degux(f) = degu(z 7→ f ′|x · z). In other
words, we have reduced computing degux(f) to computing the unstable global degree of
a pointed rational function. We may therefore apply [Caz12] and compute degu(z 7→
f ′|x · z) = ⟨f ′|−1

x ⟩u (see Proposition 2.11). □

Now we give a more general, algebraic formula for the unstable local degree at rational
points. This formula, which is the unstable analog of [KW19, Main Theorem] and
[BMP23, Theorem 1.2], involves the local Newton matrix [KW20, Definition 7].

Definition 3.8. Let f/g be a pointed rational function. Let r ∈ A1
k(k) be a root of f

of multiplicity m. Write a partial fraction decomposition
g(x)

f(x)
=

Ar,m

(x− r)m
+

Ar,m−1

(x− r)m−1
+ · · ·+ Ar,1

x− r
+ higher order terms.

Define the local Newton matrix

Nwtr(f/g) :=


Ar,1 Ar,2 · · · Ar,m−1 Ar,m

Ar,2 Ar,3 · · · Ar,m 0
...

... ... ...
...

Ar,m−1 Ar,m · · · 0 0
Ar,m 0 · · · 0 0

 .

The local Newton matrix represents a class in GWu(k), which we also denote by Nwtr(f/g).

To prove that Nwtr(f/g) computes degur (f/g), we first show that the unstable local
degree is an A1-homotopy invariant (c.f. [KW20, Lemma 4]).

Lemma 3.9. Let r ∈ A1
k be a closed point. Let f0

g0
, f1
g1

: P1
k → P1

k be pointed rational
functions such that f0(r) = f1(r) = 0. Suppose there exists an open subscheme U ⊆
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A1
k × A1

k containing {r} × A1
k and a morphism H : U → P1

k such that H(x, 0) = f0
g0
(x)

and H(x, 1) = f1
g1
(x). If {r} × A1

k is a connected component of H−1({0} × A1
k), then

degur (f0/g0) = degur (f1/g1).

Proof. Let Z be the union of the connected components of H−1({0} × A1
k) that are

distinct from {r} × A1
k. We can then write

U

U −H−1(0)
=

U

U − (({r} × A1
k)⨿ Z)

≃ U

U − ({r} × A1
k)
∨ U

U − Z
[Caz12, Lemma A.3]

≃ P1
k × A1

k

P1
k × A1

k − ({r} × A1
k)
∨ U

U − Z
.(excision)

This implies that the morphism U
U−H−1(0)

→ P1
k

P1
k−{0} induced by H is equivalent to a

morphism

(3.4)
P1
k × A1

k

P1
k × A1

k − ({r} × A1
k)
∨ U

U − Z
→ P1

k

P1
k − {0}

.

Pre-composing Equation 3.4 with the natural morphisms

P1
k

P1
k − {r}

× A1
k →

P1
k × A1

k

P1
k × A1

k − ({r} × A1
k)
→ P1

k × A1
k

P1
k × A1

k − ({r} × A1
k)
∨ U

U − Z

gives us a naïve A1-homotopy from the map (f0
g0
)
r

to (f1
g1
)
r

(in the notation of Setup 3.1).

It follows that we have a naïve homotopy from (f0
g0
)
r
◦ cr to (f1

g1
)
r
◦ cr, and hence these

maps determine the same element of GWu(k). □

Using Lemma 3.9, we can now compute degur (f/g) = Nwtr(f/g) when r is a rational
point (c.f. [KW20, Corollary 8]).

Lemma 3.10. Let f/g be a pointed rational function. Let r ∈ A1
k(k) be a root of f .

Then
degur (f/g) = Nwtr(f/g).

Proof. Since r is a root of f of order m, there exist A ∈ k× and a polynomial f0(x) ∈ k[x]
such that f(x) = (x− r)m(A + (x− r)f0(x)). Similarly, since f/g is a pointed rational
function, r is not a root of g and hence there exist B ∈ k× and a polynomial g0(x) ∈ k[x]
such that g(x) = B + (x− r)g0(x).

Now let U = {(x, t) ∈ P1
k × A1

k : x ̸=∞ and g(x) ̸= 0}. Then

H1(x, t) =
(x− r)m(A+ t(x− r)f0(x))

g(x)
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determines a morphism H1 : U → P1
k such that H1(x, 0) =

A(x−r)m

g(x)
and H1(x, 1) =

f
g
(x).

This morphism satisfies the criteria of Lemma 3.9, which implies

degur (f/g) = degur (A(x− r)m/g(x)).

Next, we get a morphism H2 : P1
k × A1

k → P1
k given by

H2(x, t) =
A(x− r)m

B + t(x− r)g0(x)

that also satisfies the criteria of Lemma 3.9. Thus

degur (A(x− r)m/g(x)) = degur (A(x− r)m/B).

Since r is the only root of A(x−r)m/B, it follows from Proposition 3.4 that degur (f/g) =
degu(A(x−r)m/B). We now normalize A(x−r)m/B = (x−r)m

B/A
and apply Proposition 2.11

to compute

degu( (x−r)m

B/A
) =


∗ ∗ · · · ∗ B

A

∗ ∗ · · · B
A

0
...

... ... ...
...

∗ B
A
· · · 0 0

B
A

0 · · · 0 0

 .

It thus suffices to prove that B
A

= Ar,m. Given a rational function F , let Resm(F, r)
denote the coefficient of (x − r)−m in the Laurent expansion of F about r,1 so that
Ar,m = Resm(g/f, r). Since f(x) = A(x− r)m(1 + (x− r)f0(x)), we have

1

f
=

1

A(x− r)m

∑
i≥0

ai(x− r)i

with a0 ∈ k× and ai ∈ k for i > 0. Thus

Ar,m = Resm
( g
f
, r
)

= Resm
(B + (x− r)g0

A(x− r)m

∑
i≥0

ai(x− r)i, r
)

=
B

A
,

as desired. □

Remark 3.11. Lemma 3.10 corroborates Proposition 3.7. If f/g has a simple root at
r, then Lemma 3.10 (in particular, its proof) implies that degur (f/g) = ⟨Res(g/f, r)⟩u.

1One might call Resm a higher residue, since Res1 is the usual residue from complex analysis.
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The standard trick for computing the residue of a simple pole tells us

Res(g/f, r) =
g(r)

f ′(r)

=
g(r)2

f ′(r) · g(r)− f(r) · g′(r)
= (f/g)′(r)−1,

since f(r) = 0. Thus ⟨Res(g/f, r)⟩u = ⟨(f/g)′|−1
r ⟩u.

4. Local-to-global principle, homotopically

Given a map f : P1
k → P1

k, we are interested in understanding the relationship between
the unstable degree degu(f) and the unstable local degrees degux(f) for x ∈ f−1(0). In
particular, we would like to prove a local-to-global principle or local decomposition for
degu(f), namely that

degu(f) =
∑

x∈f−1(0)

degux(f).(4.1)

In topology, such local decompositions give rise to the Poincaré–Hopf theorem for vector
bundles. A crucial aspect of Equation 4.1 is that the sum is indexed over the vanishing
locus f−1(0) — we do not only want to express degu(f) in terms of simpler summands,
but rather that these summands have an explicit and tractable geometric relationship
to the morphism f .

In this section, we will prove a homotopical local decomposition

f =
∑

x∈f−1(0)

f̄x ◦ cx.(4.2)

In Section 6, we will obtain an algebraic local decomposition degu(f) =
∑

x∈f−1(0) deg
u
x(f)

by analyzing the image of Equation 4.2 in GWu(k). We will also discuss Cazanave’s
decomposition of degu(f) and how it fails to be local.

Homotopically, sums of maps are given by pinching and folding. That is, given f, g :
X → Y , the sum f + g is defined as the composite

X
⋎−→ X ∨X

f∨g−−→ Y ∨ Y
∇−→ Y.

The fold is actually unnecessary for our purposes: the wedge is the coproduct in pointed
spaces, so maps out of the wedge are in bijection with a set of maps out of each to a
fixed target. Post-composition with the fold map would be necessary if we were working
with an external wedge sum, which we will not need in this article.

Whenever X is a suspension X ≃ S1 ∧ X ′, we can construct a pinch map as follows.
Any choice of inclusion S0 ⊂ S1 separates S1 into two disjoint intervals; collapsing S0

closes each of these intervals off into an S1, with the two copies of S1 joined together at
the image of S0 (see Figure 1). One then defines the pinch ⋎ : X → X ∨X as

S1 ∧X ′ ⋎−→ (S1 ∨ S1) ∧X ′ ≃ (S1 ∧X ′) ∨ (S1 ∧X ′).
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S0

Figure 1. Pinching S1

Here, the last homotopy equivalence holds in any category where smash products dis-
tribute over wedge sums, i.e. any category in which products commute with pushouts.

In order to add pointed endomorphisms of P1, we need a workable pinch map P1 →
P1 ∨P1. While P1 ≃ S1 ∧Gm as a motivic space, the simplicial pinch map P1 → P1 ∨P1

is unwieldy from the perspective of algebraic geometry. That is, there is not an evident
way to describe the simplicial pinch in terms of subschemes of P1. This stems from the
fact that we need A1-invariance to realize P1 as a suspension:

Gm ∗

∗ S1 ∧Gm

≃
Gm A1

A1 P1.

While the simplicial pinch map gives the usual group structure on [P1
k,P1

k]
∼= GWu(k)

[Caz12, Lemma 3.20 and Theorem 3.21], Cazanave noticed that the collapse map can be
viewed as an algebraic pinch map [Caz12, Lemma A.3]. Cazanave used these algebraic
pinch maps to define the naïve sum ⊕N : [P1,P1]2 → [P1,P1] [Caz12, §3.1], which give a
method for decomposing global maps into “local” terms. However, as we will describe in
Section 6.1, the naïvely local terms of a map f : P1 → P1 fail to be truly local.

While Cazanave only considers the pinch map arising from the collapse map c{0,∞} :
P1
k → P1

k/(P1
k−{0,∞}), we will need to consider the pinch maps arising from cD : P1

k →
P1
k/(P1

k −D) for arbitrary divisors D ⊂ P1
k(k). We begin by defining the algebraic pinch

map associated to D.

Lemma 4.1. Let x ∈ P1
k(k) be a rational point. Then there exists a homotopy inverse

p :
P1
k

P1
k−{x} → P1

k to cx in H•(k).

Proof. The collapse map cx is a homotopy equivalence by [Hoy14, Lemma 5.4], which
implies the existence of a homotopy inverse p. In fact, an explicit formula for p is given
in loc. cit. □

Definition 4.2. Let D = {x1, . . . , xn} ⊂ P1
k(k) be a finite set of rational points. Define

the D-pinch map as the composite

⋎D : P1
k

cD−→ P1
k

P1
k −D

≃−→
n∨

i=1

P1
k

P1
k − {xi}

∨ipi−−→
n∨

i=1

P1
k,
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where cD is the collapse map induced by the inclusion P1
k −D ↪→ P1

k, the second map is
the canonical isomorphism of motivic spaces P1

k/(P1
k −D) ∼=

∨n
i=1 P1

k/(P1
k − {xi}) given

by [Caz12, Lemma A.3], and pi = c−1
xi

(which exists by Lemma 4.1) for each i.

Homotopically, the desired local-to-global principle for the unstable degree should be
encoded as the commutativity of the following diagram, which relates our “global” map
f : P1

k → P1
k to an appropriate sum ∨i(f̄xi

◦ cxi
) ◦⋎D : P1

k → P1
k of its local terms.

(4.3)

P1
k

P1
k

P1
k−D

∨
i

P1
k

P1
k−{xi}

∨
i P1

k

P1
k

∨
i

P1
k

P1
k−{xi}

∨
i P1

k

cD

f

∼=

∼=

∨ipi

∨if̄xi
∨icxi

Theorem 4.3 (Local-to-global principle, homotopically). Let f : P1
k → P1

k be a pointed
rational map with vanishing locus D = {x1, . . . , xn} ⊂ P1

k(k). Then f = ∨i(f̄xi
◦cxi

)◦⋎D

in H•(k).

Proof. The top three maps of Diagram 4.3 compose to ⋎D. Thus if Diagram 4.3 com-
mutes in H•(k), then we obtain the desired result by comparing the leftmost vertical
map with the composite around the remaining three edges of the outer rectangle.

There are three polygons in Diagram 4.3 to consider. The commutativity of the central
triangle

∼=

∼=

is simply two copies of the isomorphism P1
k

P1
k−D

∼=
∨

i

P1
k

P1
k−{xi}

[Caz12, Lemma A.3]. The
commutativity of the rightmost rectangle

∨ipi

∨icxi

follows from Lemma 4.1, which states that pi is the homotopy inverse of cxi
in H•(k).

Finally, we need to show that the leftmost trapezoid

f

cD

∼=

∨if̄xi

commutes. The commutativity of this diagram is explained in Remark 3.2. □
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In summary, we have proved that a pointed rational function is homotopic to the sum of
its homotopical local unstable degrees. The subtlety in this story is figuring out which
definition of addition ensures this local-to-global principle. Theorem 4.3 states that
taking our addition to be (−) ◦⋎D, where D is the vanishing locus of f : P1

k → P1
k, gives

us the desired local-to-global principle for f . This justifies the following definition.

Definition 4.4. Let D = {r1, . . . , rn} ⊂ A1
k(k). The (homotopical) D-sum is the func-

tion ∑
D

:= (−) ◦⋎D : [P1
k,P1

k]
n → [P1

k,P1
k].

If we do not wish to specify the divisor D, we may refer to the D-sum as a (homotopical)
divisorial sum.

Our next goal is to study the algebraic image
⊕

D := degu ◦
∑

D of the D-sum and
compare it to the usual group structure on GWu(k).

5. Aside on duplicants

Before computing the addition law
⊕

D in GWu(k), we need to generalize the notion of
the discriminant of a polynomial. We begin with some notation.

Notation 5.1. Given m,n ∈ N, denote the mth elementary symmetric polynomial in n
variables by

σm,n(x1, . . . , xn) :=
∑

1≤i1<...<im≤n

xi1 · · ·xim .

By convention, we will set σ0,n = 1 and σm,n = 0 for m ̸∈ {0, . . . , n}.

Given a monic polynomial of the form f =
∏n

i=1(x− ri)
ei , let N := deg(f) and

ri,j := (r1, . . . , r1︸ ︷︷ ︸
e1 times

, . . . , ri, . . . , ri︸ ︷︷ ︸
ei−j times

, . . . , rn, . . . , rn︸ ︷︷ ︸
en times

).

By Vieta’s formulas, the coefficient of xi in f/(x − rℓ)
j = (x − rℓ)

eℓ−j
∏

m ̸=ℓ(x − rm)
em

is given by (−1)N−i−jσN−i−j,N−j(rℓ,j). For fixed ℓ and varying 0 ≤ i ≤ N − 1 and
1 ≤ j ≤ eℓ, we get a matrix of coefficients Σℓ(f) := ((−1)N−i−jσN−i−j,N−j(rℓ,j))i,j. If we
treat i as the row index and j as the column index, then the matrix

Σ(f) :=
(
Σ1(f) Σ2(f) · · · Σn(f)

)
is an N × N square. We will only be interested in detΣ(f) and its square, so we will
conflate Σ(f) and its transpose Σ(f)⊺ when convenient.

The heavy notation needed for this setup is unfortunate, as it may obfuscate what Σ(f)
really is:
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Proposition 5.2. Let f/g : P1
k → P1

k be a pointed rational function. Assume that f =∏n
i=1(x − ri)

ei with N :=
∑n

i=1 ei. Then the change-of-basis matrix from the monomial
basis {

1

g(x)
,

x

g(x)
, . . . ,

xN−1

g(x)

}
to the Newton basis{

f(x)

(x− r1)g(x)
, . . . ,

f(x)

(x− r1)e1g(x)
, . . . ,

f(x)

(x− rn)g(x)
, . . . ,

f(x)

(x− rn)eng(x)

}
is given by Σ(f)⊺.

Proof. By definition, Σℓ(f) is the matrix of coefficients of f/(x − rℓ), . . . , f/(x − rℓ)
eℓ .

This matrix is indexed so that

Σℓ(f)
⊺


1

g(x)
...

xN−1

g(x)

 =


f(x)

(x−rℓ)g(x)
...

f(x)
(x−rℓ)

eℓg(x)

 .

It follows that Σ(f)⊺ is the desired change-of-basis matrix. □

Remark 5.3. Note that the change-of-basis matrix in Proposition 5.2 does not depend
on g(x), justifying the notation Σ(f).

We will need to work with detΣ(f)2 in Section 6, so we give it a name and derive a
formula for it.

Definition 5.4. Let f ∈ k[x] be a monic polynomial whose roots are all k-rational.
Under the conventions listed in Notation 5.1, we define the duplicant of f as

D(f) := detΣ(f)2.

Example 5.5. Let f = (x− r1)(x− r2)
2. Then Σ1(f) =

(
r22 −2r2 1

)
and

Σ2(f) =

(
r1r2 −r1 − r2 1
−r1 1 0

)
.

Setting fred = (x− r1)(x− r2), we compute

D(f) = det

 r22 −2r2 1
r1r2 −r1 − r2 1
−r1 1 0

2

= (r1 − r2)
4

= disc(fred)
2.

See Appendix A for some rough Sage code for computing duplicants.

The following proposition shows that the duplicant is indeed a generalization of the
discriminant.



MOTIVIC CONFIGURATIONS ON THE LINE 17

Proposition 5.6. Let f =
∏n

i=1(x− ri) with all ri distinct. Then D(f) = disc(f).

Proof. Since ei = 1 for all i, the matrices of coefficients take the form

Σℓ(f) := ((−1)N−i−1σN−i−1,N−1(r1, . . . , r̂ℓ, . . . , rn))
N−1
i=0 .

Note that
∂σa,b

∂xℓ

=
∑

1≤i1<...<ℓ<...<ia≤b

xi1 · · · x̂ℓ · · ·xia

= σa−1,b−1(x1, . . . , x̂ℓ, . . . , xb)

when 1 ≤ a ≤ b. It follows that, up to multiplying some rows by −1, we have

Σ(f) =


σn−1,n−1(r1,1) σn−2,n−1(r1,1) · · · σ0,n−1(r1,1)
σn−1,n−1(r2,1) σn−2,n−1(r2,1) · · · σ0,n−1(r2,1)

...
... . . . ...

σn−1,n−1(rn,1) σn−2,n−1(rn,1) · · · σ0,n−1(rn,1)



=


∂σn,n

∂x1

∂σn−1,n

∂x1
· · · ∂σ1,n

∂x1
∂σn,n

∂x2

∂σn−1,n

∂x2
· · · ∂σ1,n

∂x2...
... . . . ...

∂σn,n

∂xn

∂σn−1,n

∂xn
· · · ∂σ1,n

∂xn


∣∣∣∣∣
xi=ri

,

where the evaluation sets xi = ri for all 1 ≤ i ≤ n. Thus

detΣ(f) = ± Jac(σn,n, . . . , σ1,n)|xi=ri .

In order to compute detΣ(f)2, it therefore suffices to evaluate the Jacobian determinant
of the elementary symmetric polynomials. The computation

Jac(σ1,n, . . . , σn,n) =
∏

1≤i<j≤n

(xi − xj)

is classical (see e.g. [Per51, pp. 150]) and implies

Jac(σn,n, . . . , σ1,n) = (−1)⌊n/2⌋
∏

1≤i<j≤n

(xi − xj).

After evaluating xi 7→ ri, this squares to disc(f). □

Based on computations using the code in Appendix A, we can conjecture (and subse-
quently prove) a compact formula for D(f).

Theorem 5.7. If f =
∏n

i=1(x− ri)
ei, then

detΣ(f) = ±
∏

1≤i<j≤n

(ri − rj)
eiej ,

and hence
D(f) =

∏
1≤i<j≤n

(ri − rj)
2eiej .
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Proof. Let N :=
∑n

i=1 ei. Consider the monomial, slant monomial, and Newton bases of
Q(f) := k[x]/(f):

Bmon(f) =

{
1, x, x2, . . . , xN−1

}
,

Bslant(f) =

{
1, (x− r1), . . . , (x− r1)

e1 ,

(x− r1)
e1(x− r2), . . . , (x− r1)

e1(x− r2)
e2 ,

. . . ,

n−1∏
i=1

(x− ri)
ei · (x− rn), . . . ,

n−1∏
i=1

(x− ri)
ei · (x− rn)

en−1

}
,

BNwt(f) =
n⋃

i=1

{
f

x− ri
, . . . ,

f

(x− ri)ei

}
.

Given bases B and B′, denote the B-to-B′ change-of-basis matrix by TB
B′ . To simplify

notation, we will write Tmon
Nwt (f) := T

Bmon(f)

BNwt(f)
, and similarly for other pairs of bases among

Bmon(f), Bslant(f), BNwt(f). By Proposition 5.2, we can prove the present theorem by
showing that detTmon

Nwt (f) = ±
∏

i<j(ri − rj)
eiej .

Note that Tmon
slant(f) is a triangular matrix with all entries on the diagonal equal to 1, since

the elements of mon(f) and slant(f) are monic polynomials of degrees 0, 1, . . . , N − 1.
In particular, detTmon

slant(f) = 1, so detTmon
Nwt (f) = detT slant

Nwt (f). We will thus compute
detT slant

Nwt (f).

We conclude the proof by inducting on n. The base case is n = 1, in which T slant
Nwt (f)

is a permutation matrix (and thus has determinant ±1) and
∏

1≤i<j≤n(ri − rj)
eiej is an

empty product (and thus equal to 1). As the inductive hypothesis, we may therefore
assume

detT slant
Nwt (f̃) = ±

∏
1≤i<j≤n−1

(ri − rj)
eiej ,

where f̃ =
∏n−1

i=1 (x − ri)
ei (so that f = f̃ · (x − rn)

en). We will complete the inductive
step in Lemma 7.23. □

Lemma 5.8. Assume the notation of Theorem 5.7 and its proof. If detT slant
Nwt (f̃) =

±
∏

1≤i<j≤n−1(ri − rj)
eiej , then detT slant

Nwt (f) = ±
∏

1≤i<j≤n(ri − rj)
eiej .

Proof. Note that

BNwt(f) =

{
v(x) · (x− rn)

en : v(x) ∈ BNwt(f̃)

}
∪
{

f

x− rn
, . . . ,

f

(x− rn)en

}
,

Bslant(f) = Bslant(f̃) ∪
{

f

(x− rn)en
, . . . ,

f

x− rn

}
.(5.1)
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This implies that T slant
Nwt (f) is a block diagonal matrix: the rows of T slant

Nwt (f) corresponding
to the {f/(x − rn), . . . , f/(x − rn)

en} are 0 in the columns corresponding to Bslant(f̃)
and a permutation matrix in the remaining columns. Similarly, the rows of T slant

Nwt (f)

corresponding to the elements {v(x) · (x− rn)
en : v(x) ∈ BNwt(f̃)} are the first

∑n−1
i=1 ei

rows of the product

M · T slant
Nwt (f̃)

(followed by en columns of zeros), where M is the N × (
∑n−1

i=1 ei) matrix corresponding
to the linear transformation Q(f̃) → Q(f) given by multiplication by (x − rn)

en on
Bslant(f̃).

By Equation 5.1, the first
∑n−1

i=1 ei rows of M correspond to the elements of Bslant(f̃). In
particular, the matrix M consists of a square matrix S with rows and columns indexed
by Bslant(f̃), followed by en rows underneath that are irrelevant for our computations.
The matrix S can be written as P ·M , where P is the matrix of the projection Q(f)→
Q(f̃) corresponding to forgetting the basis elements Bslant(f) − Bslant(f̃) = {f/(x −
rn)

en , . . . , f/(x− rn)}.

All of this setup allows us to state

detT slant
Nwt (f) = ± det

(
M · T slant

Nwt (f̃)
)N−en

i,j=1

= ± det(P ·M) · detT slant
Nwt (f̃).

It thus suffices to prove that det(P ·M) =
∏n−1

i=1 (ri − rn)
eien . Note that if we write

F =
n∏

i=1

ei∏
j=1

(x− ri,j)

and treat ri,j as variables, then Bslant(F ) is a basis for the free k[r1,1, . . . , rn,en ]-module
given by polynomials in k[r1,1, . . . , rn,en ][x] of degree at most N − 1. Similarly, writing

F̃ =
n−1∏
i=1

ei∏
j=1

(x− ri,j),

we have that Bslant(F̃ ) is a basis for the free k[r1,1, . . . , rn−1,en−1 ]-module given by polyno-
mials in k[r1,1, . . . , rn−1,en−1 ][x] of degree at most N − en− 1. Specializing ri,j 7→ ri sends
F 7→ f and F̃ 7→ f̃ . In particular, we can compute det(P ·M) by working with Bslant(F )
and Bslant(F̃ ) and then specializing. By inductively specializing, beginning with rn,j and
working down to r1,j, we may therefore assume that ei = 1 for 1 ≤ i ≤ n− 1.
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Now let

v1 = 1,

v2 = x− r1,

v3 = (x− r1)(x− r2)

...
vn = (x− r1) · · · (x− rn−1),

so that Bslant(f) = {v1, . . . , vn, f
(x−rn)en

, . . . , f
x−rn
}. We then define constants ai,j ∈ k by

vi(x) · (x− rn)
en =

N−en∑
j=1

ai,j · vj(x) +Ri(x),(5.2)

where Ri(x) is a k-linear combination of the basis elements { f
(x−rn)en

, . . . , f
x−rn
}. As

matrices, we have
P ·M = (ai,j)

n
i,j=1,

so we need to show that det(ai,j) =
∏n−1

i=1 (ri− rn)
en (recall that we have assumed ei = 1

for i < n). Note that Ri(rℓ) = 0 for all 0 ≤ ℓ < n. Similarly, vi(rℓ) = 0 for i > ℓ.
Substituting x = rℓ into Equation 5.2 for 1 ≤ ℓ < n, we find that

ai,j =

{
(ri − rn)

en i = j,

0 i < j.

This implies that det(P · M) =
∏n−1

i=1 (ri − rn)
en when e1 = . . . = en−1 = 1, which

completes the proof. □

Remark 5.9. If we loosen the requirement that f be monic, we can still define and
compute the duplicant of f . If f ∈ k[x] with all roots r1, . . . , rn rational, then we can
write f = c ·h, where h =

∏n
i=1(x− ri)

ei and c ∈ k×. The coefficient matrix Σ(f) is now
given by scaling each column of Σ(h) by c, so we find that

detΣ(f) = crankΣ(h) · detΣ(h)
= c

∑
i ei · detΣ(h).

If we define D(f) := detΣ(f)2 and denote N := deg(f) = deg(h) =
∑n

i=1 ei, then it
follows from Theorem 5.7 that

D(f) = c2N
∏

1≤i<j≤n

(ri − rj)
2eiej .

Unlike the usual discriminant, the duplicant need not vanish when f has repeated roots.
In fact, since D(f) is the square of the determinant of the monomial-to-Newton change-
of-basis matrix, we have D(f) ̸= 0.
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6. Local-to-global principle, algebraically

Our next goal is to derive an algebraic formula for the homotopical D-sum given in
Theorem 4.3. We will begin by showing that this sum must be more subtle than the
natural group structure on GWu(k). To do so, we need to recall Cazanave’s monoid
operation on [P1

k,P1
k] (whose group completion maps under degu to the standard group

structure on GWu(k)) [Caz12, §3.1].

Definition 6.1. Let f be a polynomial with deg(f) = n. Then there is a unique pair of
polynomials u, v with deg(u) ≤ n− 2 and deg(v) ≤ n− 1 satisfying the Bézout identity
fu + gv = 1. Given two pointed rational functions f1/g1 and f2/g2, let ui, vi be the
corresponding pairs of polynomials. Write(

f3 −v3
g3 u3

)
:=

(
f1 −v1
g1 u1

)(
f2 −v2
g2 u2

)
.

Then the naïve sum is defined to be f1/g1 ⊕N f2/g2 := f3/g3, which is again a pointed
rational function.

By specifying the monoid structure on [P1
k,P1

k] in Theorem 2.9, Cazanave effectively
gives a local-to-global principle for computing the unstable degree in terms of Bézmon.
However, we will see that this naïve local-to-global principle does not satisfy our desired
criteria. The shortcoming is that when decomposing a pointed rational function f/g
by the naïve sum, the resulting “local” terms do not vanish at the same points as the
original function f/g.

Instead, we will show that the local Newton matrix, namely our formula for the unstable
local degree, satisfies a local-to-global principle with respect to the divisorial sum (see
Definitions 4.4 and 6.4).

6.1. Insufficiency of the naïve local-to-global principle. By Theorem 2.9, one can
express the unstable degree of a pointed rational function f/g as a sum of unstable
degrees of rational functions f1/g1, . . . , fn/gn of lesser degree. Iterating this process
decreases the degrees of the naïve summands, so one can assume that each fi/gi vanishes
at a single point in P1

k. The unstable local degree of such a function should be equal to its
unstable (global) degree, so this gives a naïve local-to-global principle for the unstable
degree. Unfortunately, the point of vanishing of fi/gi can never belong to the vanishing
locus of f/g:

Proposition 6.2. Let f/g : P1
k → P1

k be a pointed rational function. Assume that
f = f1 · f2 for some non-constant polynomials f1, f2. Then there cannot exist g1, g2 such
that fi/gi : P1

k → P1
k are pointed rational functions with f/g = f1/g1 ⊕N f2/g2.

Proof. Suppose that f/g = f1/g1⊕N f2/g2 with f = f1 · f2. By definition of ⊕N, we have
f = f1f2 − v1g2, so v1g2 = 0. Since g2 is the denominator of a pointed rational function
and the ring of polynomials over a field is a domain, we deduce that v1 = 0. But this
implies that f1u1 = 1, so f1 is a unit. It follows that f1 must be constant, contradicting
our assumption that f1, f2 are non-constant. □
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Corollary 6.3. Let f/g : P1
k → P1

k be a pointed rational function with vanishing locus
{x1, . . . , xn}. For each xi, let mi be its minimal polynomial. Let ei · deg(mi) be the
order of vanishing of f at xi, so that f =

∏n
i=1 m

ei
i . Then there cannot exist polynomials

g1, . . . , gn such that mei
i /gi : P1

k → P1
k are pointed rational functions satisfying

degu(f/g) =
n∑

i=1

degu(mei
i /gi).(6.1)

Proof. By [Caz12, Theorem 3.6], finding g1, . . . , gn satisfying Equation 6.1 is equivalent
to finding g1, . . . , gn such that

f

g
=

me1
1

g1
⊕N · · · ⊕N men

n

gn
.

Since ⊕N is associative, we can reduce via induction to the n = 2 case. It now follows
from Proposition 6.2 that such a factorization cannot exist. □

Corollary 6.3 tells us that the Bézoutian with respect to the monomial basis will not give
a satisfactory unstable local degree, in contrast with the unstable global degree [Caz12]
and the stable local degree [BMP23]. This is because the local terms in any naïve
decomposition will not vanish at any points in the vanishing locus of our original function.

6.2. Divisorial sums of local terms. We have just seen that in general, the naïve
sum will not give us a satisfactory local-to-global principle. In Theorem 4.3, we saw
that our desired local-to-global principle requires that we work with the homotopical
sum (−) ◦ ⋎D, where D is the vanishing locus of the pointed rational map that we are
trying to decompose. In contrast, the naïve sum is defined homotopically by collapsing
the complement of the locus {0,∞}. In other words, the naïve sum fails to give the
desired local-to-global principle, because the vanishing locus of a pointed rational map
is generally not a subset of {0,∞}.

Our next goal is to compute the image in GWu(k) (under the Bézoutian) of the addition
law

∑
D := (−) ◦ ⋎D. We will also call this image the (algebraic) D-sum, denoted ⊕D,

which will depend on D. We will use Theorem 4.3, our formula for the unstable local
degree, and Cazanave’s formula for the unstable global degree to compute ⊕D.

Definition 6.4. Let D = {r1, . . . , rn} ⊂ P1
k(k) be a finite set of rational points. The

(algebraic) D-sum is the function⊕
D

:
n⊕

i=1

GWu(k)→ GWu(k)

satisfying
⊕

D degu(fi) = degu(∨ifi ◦⋎D) for any n-tuple f1, . . . , fn : P1
k → P1

k of pointed
rational maps. In other words,

⊕
D := degu ◦

∑
D.

As with the homotopical D-sum, we will say (algebraic) divisorial sum when we do not
wish to specify the divisor D.
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Our goal is to give an algebraic formula for ⊕D for any n-tuple of elements in GWu(k).
As a first step, we can use the homotopical local-to-global principle (Theorem 4.3) and
our formula for the unstable local degree (Lemma 3.10) to compute a formula for ⊕D in
some cases.

Proposition 6.5. Let f/g : P1
k → P1

k be a pointed rational function, with vanishing
locus D = {r1, . . . , rn}. Let deguri(f/g) = (βi, di) ∈ GWu(k), and let mi = rank βi and
m =

∑
imi. Then

(6.2)
⊕
D

((β1, d1), . . . , (βn, dn)) =
( n⊕

i=1

βi,

n∏
i=1

di ·
∏
i<j

(ri − rj)
2mimj

)
.

Proof. The unstable Grothendieck–Witt group GWu(k) is the group completion of iso-
morphism classes of pairs (β, b1, . . . , bn) where β is a nondegenerate, symmetric bilinear
form on a k-vector space with basis b1, . . . , bn, and where an isomorphism is a linear
isomorphism preserving the inner product and with determinant one in the given basis
[Mor12, Remark 7.37]. We can therefore describe elements of GWu(k) in terms of k-
vector space, a choice of basis, and the Gram matrix of a symmetric bilinear form with
respect to that basis.

Recall the notation Q(f/g) := k[x, 1
g
]/(f

g
), and consider the following bases of Q(f/g):

Bmon(f) =

{
1, x, x2, . . . , xm−1

}
,

Bmon/g(f) =

{
1

g
,
x

g
,
x2

g
, . . . ,

xm−1

g

}
,

BNwt(f) =
n⋃

i=1

{
f(x)

(x− ri)
,

f(x)

(x− ri)2
, . . . ,

f(x)

(x− ri)mi

}
,

BNwt/g(f) =
n⋃

i=1

{
f(x)

(x− ri)g(x)
,

f(x)

(x− ri)2g(x)
, . . . ,

f(x)

(x− ri)mig(x)

}
.

By [Caz12, Theorem 3.6], the Gram matrix of degu(f/g) with respect to Bmon(f) is
given by Bézmon(f/g) = (aij), where

(6.3)
f(x)g(y)− f(y)g(x)

x− y
=

∑
i,j

aijx
iyj.

Dividing both sides of Equation 6.3 by g(x)g(y), we obtain
f(x)/g(x)− f(y)/g(y)

x− y
=

∑
i,j

aij
xi

g(x)

yj

g(y)
.

As described in [KW20, Section 3 and Equation (22)], the (global) Newton matrix is
given by Nwt(f/g) = (aij), where

f(x)/g(x)− f(y)/g(y)

x− y
=

∑
i,j

aijvi(x)vj(y)
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and {v1, . . . , vm−1} = BNwt/g(f). This means that degu(f/g) and Nwt(f/g) are related
by changing basis from Bmon/g(f) to BNwt/g(f). Note that the relevant change-of-basis
matrix is identical to the change-of-basis matrix Tmon

Nwt from Bmon(f) to BNwt(f). More-
over, Nwt(f/g) =

⊕n
i=1Nwtri(f/g) by [KW20, Definition 7]. In summary, we find that

degu(f/g) = (Tmon
Nwt )

⊺ · Nwt(f/g) · Tmon
Nwt

= (Tmon
Nwt )

⊺ ·
n⊕

i=1

Nwtri(f/g) · Tmon
Nwt

= (Tmon
Nwt )

⊺
( n∑

i=1

deguri(f/g)
)
Tmon
Nwt ,

where the last equality follows from Lemma 3.10. We conclude the proof by taking
determinants and recalling that det(Tmon

Nwt )
2 =

∏
i<j(ri − rj)

2mimj by Theorem 5.7. □

Remark 6.6. Note that we can rewrite Equation 6.2 as⊕
D

((β1, d1), . . . , (βn, dn)) =
( n⊕

i=1

βi,D(f) ·
n∏

i=1

di
)
,

where D(f) is the duplicant of f .

7. Divisorial sums in general

In this section, we prove Theorem 1.1. Rather than working explicitly with [P1
k,P1

k], we
will work in terms of the fundamental group sheaf πA1

1 (P1). This is enabled by a theorem
of Morel [Mor12, Remark 7.32], which is that there is a group isomorphism

(7.1) [P1
k,P1

k]
∼= End(πA1

1 (P1)(k)).

We think of Equation 7.1 as stating that P1 is A1-anabelian (as discussed in Section 1).

Using Equation 7.1 to translate to πA1

1 (P1), the general idea behind our proof of The-
orem 1.1 is to show that the D-sum of f1, . . . , fn : P1 → P1 only depends on the free
product ˚n

i=1 π
A1

1 (fi) up to 2-nilpotence. We will need a fair amount of setup before we
can employ this strategy.

Consider the Hopf map

η : A2 − {0} → P1

(x, y) 7→ [x : y]

and the map ι1,∞ : P1 → P∞ classifying O(1). Morel proved [Mor12, p. 191] that these
together form an A1-fiber sequence

A2 − {0} η−→ P1 ι1,∞−−→ P∞,

and that the induced long exact sequence of homotopy sheaves yields a central extension

(7.2) 1→ KMW
2
∼= πA1

1 (A2 − {0})
πA1
1 (η)
−−−→ πA1

1 (P1)
πA1
1 (ι1,∞)
−−−−−→ πA1

1 (P∞) ∼= Gm → 1,
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where KMW denotes the Milnor–Witt K-theory sheaf. Here, we use the following base
points:

(1, 0) ∈ A2 − {0},
η(1, 0) = [1 : 0] ∈ P1,

ι1,∞[1 : 0] = [1 : 0 : . . .] ∈ P∞.

Moreover, we have a section

θ : Gm → ΩΣGm ≃ ΩP1

of ℘ by [Mor12, p. 191].

By Morel’s anabelian theorem (Equation 7.1) and the isomorphism [P1
k,P1

k]
∼= GWu(k),

we can associate to each β ∈ GWu(k) and endomorphism πA1

1 (β) : πA1

1 (P1)(k) →
πA1

1 (P1)(k). Let us use the notation ℘ := πA1

1 (ι1,∞) : πA1

1 (P1) → πA1

1 (P∞) ∼= Gm. The
composite of ℘ with (the image of) an arbitrary element in GWu(k) depends only on
the rank of that element:

Lemma 7.1. Given β ∈ GWu(k), let πA1

1 (β) denote the corresponding element in
πA1

1 (P1). If β has rank m, then

℘ ◦ πA1

1 (β) = m ◦ ℘,
where m : Gm → Gm is given by z 7→ zm.

Proof. Given a sheaf of pointed sets F , the contraction of F is the sheaf

F−1 := Map(Gm,F).

(See e.g. [Mor12, Remark 2.23] or [Bac24, Section 4].) Contractions can be used to
compute [P1,P∞] ∼= Z. Indeed, the weak equivalence P1 ≃ ΣGm implies that [P1,Pn] ∼=
[ΣGm,Pn], and we have [ΣGm,Pn] ∼= πA1

1 (Pn)−1(k) by definition of the contraction.
Moreover, Morel proves that the Gm-torsor An+1 − {0} → Pn is the universal cover
[Mor12, Theorem 7.13], which implies that πA1

1 (Pn) ∼= Gm. It is now straightforward to
compute the contraction πA1

1 (Pn)−1
∼= Z. Writing [P1,P∞] as a colimit, we then have

[P1,P∞] ∼= colimn[P1,Pn]

∼= colimn π
A1

1 (Pn)−1(k)
∼= Z.

An explicit isomorphism [P1,P∞] → Z sends a map in [P1,P∞] to the degree of the
corresponding pullback of O(1).

Recall that P∞ ≃ BGm, so the map m : Gm → Gm induces a map Bm : P∞ → P∞.
Both of the maps

P1 β−→ P1 ι1,∞−−→ P∞,

P1 ι1,∞−−→ P∞ Bm−−→ P∞
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classify O(m). By the above computation of [P1,P∞] ∼= Z, this implies that Bm ◦ ι1,∞ ≃
ι1,∞ ◦ β. We conclude by noting that πA1

1 (Bm ◦ ι1,∞) = m ◦ ℘ and πA1

1 (ι1,∞ ◦ β) =

℘ ◦ πA1

1 (β). □

Corollary 7.2. If β ∈ GWu(k) has rank 0, then we have a natural transformation

πA1

1 (β) : πA1

1 (P1)→ KMW
2 .

Proof. Lemma 7.1 implies that πA1

1 (β) lies in the kernel of ℘. By Equation 7.2, the kernel
of ℘ is the inclusion KMW

2 ↪→ πA1

1 (P1) via the Hopf map. Thus πA1

1 (β) : πA1

1 (P1)→ KMW
2 ,

as desired. □

7.1. Good pinch maps. Our next step is to study the effect of πA1

1 on maps of the
form P1 →

∨
i P1. We begin with a definition.

Definition 7.3. Given n ∈ N and 1 ≤ j ≤ n, let

ιj : P1 →
n∨

i=1

P1,

sj :
n∨

i=1

P1 → P1

denote the inclusion of the jth summand and projection onto the jth summand, respec-
tively. We say that a map c : P1 →

∨n
i=1 P1 is a good pinch map is sj ◦ c = idP1 for all

j ∈ {1, . . . , n}.

The two pinch maps we will need for Theorem 1.1 are both good pinch maps:

Example 7.4 (Simplicial pinch). The weak equivalence P1 ≃ ΣGm (coming from P1 =
A1 ∪Gm A1) and the standard pinch map S1 → S1 ∨ S1 induce a good pinch map
c+ : P1 → P1 ∨ P1. We refer to c+ as the simplicial pinch.

Example 7.5 (Divisorial pinch). Let D = {r1, . . . , rn} ⊂ A1
k(k). Let ⋎D : P1

k →
∨n

i=1 P1
k

be the D-pinch map (Definition 4.2). Then ⋎D is a good pinch map.

The next few results are devoted to the effect of πA1

1 on good pinch maps, such as
compatibility with the group structure on KMW

2 or 2-nilpotent behavior. For most of
these results, we need the following definitions.

Definition 7.6. A sheaf of groups G is called strongly A1-invariant if

Hi
Nis(X,G)→ Hi

Nis(X × A1,G)

is a bijection for i = 0, 1.
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Definition 7.7. Let Gr and GrA1 denote the categories of sheaves of groups and strongly
A1-invariant sheaves of groups, respectively. Let

a : Gr → GrA1

denote the left adjoint to the inclusion GrA1 ⊂ Gr [Mor12, Remark 7.11]. Given a family
{Gi} of strongly A1-invariant sheaves, we define their sum as

A1

˚
i
Gi := a

(
˚
i
Gi
)
,

where ∗ denotes the free product. We will generally omit the superscript A1 from this
notation, so the reader should take the initial strongly A1-invariant sheaf whenever a
free product appears.

Lemma 7.8. Let β, β0 ∈ GWu(k) with rank β0 = 0. Let c : P1 → P1 ∨ P1 be a good
pinch map. For all U ∈ Smk and γ ∈ πA1

1 (P1)(U), we have

πA1

1 ((β ∨ β0) ◦ c)(γ) = πA1

1 (β)(γ) + πA1

1 (β0)(γ).

Proof. First, we need to explain the notation πA1

1 (β)(γ)+πA1

1 (β0)(γ). Since KMW
2 lies in

the center of πA1

1 (P1) by Equation 7.2, there is an induced addition homomorphism

+ : πA1

1 (P1)×KMW
2 → πA1

1 (P1).

We can therefore add πA1

1 (β)(γ) ∈ πA1

1 (P1)(U) to πA1

1 (β0)(γ) ∈ KMW
2 (U), using the

natural transformation πA1

1 (β0) : π
A1

1 (P1)→ KMW
2 given by Corollary 7.2.

By Morel’s Seifert–van Kampen theorem [Mor12, Theorem 7.12], the canonical maps
πA1

1 (ιi) assemble to an isomorphism

(7.3) a
( n

˚
i=1

πA1

1 (ιi)
)
: a

( n
˚
i=1

πA1

1 (P1)
) ∼=−→ πA1

1

( n∨
i=1

P1
)
.

Under Equation 7.3, the map πA1

1 (β ∨ β0) : π
A1

1 (P1 ∨ P1)→ πA1

1 (P1) is equivalent to the
map

a(πA1

1 (β) ∗ πA1

1 (β0)) : a(π
A1

1 (P1) ∗ πA1

1 (P1))→ πA1

1 (P1).

Recall that A1-fundamental group sheaves (over a field) are always strongly A1-invariant
[Mor12, Theorem 1.9]. The same is true for Milnor–Witt K-theory sheaves by [Mor12,
Theorem 3.37]. Thus πA1

1 (P1)×KMW
2 is strongly A1-invariant (as cohomology factors over

finite products of sheaves), so we have an equivalence a(πA1

1 (P1) ×KMW
2 ) ∼= πA1

1 (P1) ×
KMW

2 . By Corollary 7.2 and since KMW
2 lies in the center of πA1

1 (P1), the map a(πA1

1 (β)∗
πA1

1 (β0)) factors through

πA1

1 (P1)×KMW
2

+−→ πA1

1 (P1).

In total, we obtain a map

g : a(πA1

1 (P1) ∗ πA1

1 (P1))→ πA1

1 (P1)×KMW
2
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induced by a(πA1

1 (β) ∗ πA1

1 (β0)). It follows that the diagram

πA1

1 (P1 ∨ P1) πA1

1 (P1)× πA1

1 (P1)

a(πA1

1 (P1) ∗ πA1

1 (P1)) πA1

1 (P1)×KMW
2

Ś2
i=1 π

A1
1 (si)

πA1
1 (β)×πA1

1 (β0)a(˚2
i=1 π

A1
1 (ιi))

g

commutes. Since c is a good pinch map, the composite

πA1

1 (P1)
πA1
1 (c)
−−−→ πA1

1 (P1 ∨ P1)
πA1
1 (β◦s1)×πA1

1 (β0◦s2)−−−−−−−−−−−−−→ πA1

1 (P1)×KMW
2

+−→ πA1

1 (P1)

is equivalent to the composite

πA1

1 (P1)
πA1
1 (β)×πA1

1 (β0)−−−−−−−−−→ πA1

1 (P1)×KMW
2

+−→ πA1

1 (P1).

Thus πA1

1 ((β ∨ β0) ◦ c) = πA1

1 (β) + πA1

1 (β0), as desired. □

Corollary 7.9. Let β, β0 ∈ GWu(k) with rank β0 = 0. For all U ∈ Smk and γ ∈
πA1

1 (P1)(U), we have

πA1

1 (β + β0)(γ) = πA1

1 (β)(γ) + πA1

1 (β0)(γ).

Proof. This follows immediately from Lemma 7.8 by taking c := c+ to be the simplicial
pinch (Example 7.4), since (β ∨ β0) ◦ c+ = β + β0 in GWu(k) [Caz12, Lemma 3.20 and
Theorem 3.21]. □

7.2. 2-nilpotence. Our next step is to work up to 2-nilpotence, which is a simplifi-
cation enabled by the 2-nilpotence of πA1

1 (P1). This will allow us to give a convenient
presentation of πA1

1 (P1).

Recall that a group G is called 2-nilpotent if there is a normal subgroup G1 ◁ G such
that

1 =: G0 ◁ G1 ◁ G2 := G

forms a central series. In other words, the commutator subgroup [G,G] ≤ G1 is abelian,
as G1 lies in the center of G. We repackage this information in the following remark,
which we will apply later.

Remark 7.10. Let

(7.4) 1→ K → G→ A→ 1

be a central extension of groups with K and A abelian. Central extensions of A by K
are in bijection with H2(A;K). Given g1, g2 ∈ G, let [g1, g2] := g1g2g

−1
1 g−1

2 denote the
commutator. The commutator gives a homomorphism

f : A⊗ A→ K

a1 ⊗ a2 7→ [g1, g2],
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where gi 7→ ai under the surjection G → A. Moreover, f determines the extension
(Equation 7.4) up to isomorphism. Indeed, f is alternating and bilinear and therefore
determines the extension via the inclusion Hom(A ∧ A,K) ↪→ H2(A;K).

For a group sheaf G, let
G → G2-nil

be the initial map to a sheaf of 2-nilpotent groups. It turns out divisorial sums factor
through a 2-nilpotent sheaf.

Proposition 7.11. Let c : P1 →
∨n

i=1 P1 be a good pinch map. Let f1, . . . , fn : P1 → P1

be unstable pointed A1-homotopy classes of maps. Then

πA1

1 (∨ifi ◦ c) : πA1

1 (P1)→ πA1

1 (P1)

factors through a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil.

Proof. Note that πA1

1 (∨ifi) : πA1

1 (
∨n

i=1 P1) → πA1

1 (P1). As mentioned in Equation 7.3,
Morel’s Seifert–van Kampen theorem implies that the map

n
˚
i=1

πA1

1 (ιi) :
n
˚
i=1

πA1

1 (P1)→ πA1

1

( n∨
i=1

P1
)

induces an isomorphism a(˚n
i=1 π

A1

1 (P1))
∼=−→ πA1

1 (
∨n

i=1 P1). Under this isomorphism,
πA1

1 (∨ifi) is identified with the map

a
( n

˚
i=1

πA1

1 (fi)
)
: a

( n
˚
i=1

πA1

1 (P1)
)
→ πA1

1 (P1).

Since πA1

1 (P1) is 2-nilpotent (by Equation ??), ˚n
i=1 π

A1

1 (fi) factors as
n
˚
i=1

πA1

1 (P1)→
( n

˚
i=1

πA1

1 (P1)
)2-nil → πA1

1 (P1).

Since πA1

1 (P1) is strongly A1-invariant, we obtain a factorization
n
˚
i=1

πA1

1 (P1)→ a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)→ πA1

1 (P1).

Finally, we again invoke the 2-nilpotence of πA1

1 (P1) to obtain a factorization
n
˚
i=1

πA1

1 (P1)→ a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → πA1

1 (P1).

Altogether, we get a commutative diagram

πA1

1

(∨n
i=1 P1

)
πA1

1 (P1) a
(

˚n
i=1 π

A1

1 (P1)
)

πA1

1 (P1)

a
((

˚n
i=1 π

A1

1 (P1)
)2-nil)2-nil

∼=

πA1
1 (∨ifi)πA1

1 (c)

ρ

a(˚n
i=1 π

A1
1 (fi))

πA1
1 (∨ifi)
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that yields the desired factorization. (See Notation 7.12 for the notation ρ and πA1

1 (∨ifi),
which we will need later.) □

Notation 7.12. Let ρ denote the canonical map

ρ : a
( n

˚
i=1

πA1

1 (P1))→ a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil

.

Let
πA1

1 (∨ifi) : a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → πA1

1 (P1)

be the unique map such that πA1

1 (∨ifi) = πA1

1 (∨ifi) ◦ ρ.

Our next goal is to give a nice presentation of a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil. Let Gab denote
the abelianization of a group sheaf G. The following pushout diagram characterizes a
simple case of free products with amalgamation for 2-nilpotent group sheaves.

Lemma 7.13. Let G be a sheaf of 2-nilpotent groups. For each j ∈ {1, . . . , n}, let
ιj : Gab → ˚n

i=1 G denote the inclusion of the jth factor (given on group elements by
amalgamating the identity element for each i ̸= j). For i ̸= j, let

φij : Gab ⊗ Gab →
( n

˚
ℓ=1
G
)2-nil

g1 ⊗ g2 7→ [ιi(g1), ιj(g2)].

There is a pushout diagram

(7.5)

⊕
i ̸=j(Gab ⊗ Gab)

(
˚n

i=1 G
)2-nil

1
Śn

i=1 G

⊕
i ̸=j φij

f

such that f is an epimorphism inducing a central extension.

Proof. Note that ˚n
i=1 G →

Śn
i=1 G is an epimorphism, so

( n
˚
i=1
G
)2-nil → ( n

ą

i=1

G
)2-nil ∼= n

ą

i=1

G

is also an epimorphism. (Here, the last equivalence is because the product of 2-nilpotent
groups is automatically 2-nilpotent.)

Next, the abelianization of ˚n
i=1 G factors through

Śn
i=1 G, so we have a factorization

( n
˚
i=1
G
)2-nil → n

ą

i=1

G α−→
( n

˚
i=1
G
)ab
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with α an epimorphism. It follows that (˚n
i=1 G)ab ∼=

Śn
i=1 Gab, so the pushout diagram

(7.6)

⊕
i ̸=j(Gab ⊗ Gab)

(
˚n

i=1 G
)2-nil

1
Śn

i=1 Gab

⊕
i ̸=j φij

f

implies that Diagram 7.5 is also a pushout. □

Since KMW
2 and Gm are abelian group sheaves, the central extension given in Equation ??

implies that πA1

1 (P1) is a 2-nilpotent group sheaf (and hence so is
Śn

i=1 π
A1

1 (P1)). This
means that the canonical map

n
˚
i=1

πA1

1 (P1)→
n

ą

i=1

πA1

1 (P1)

factors through
n
˚
i=1

πA1

1 (P1)→
( n

˚
i=1

πA1

1 (P1)
)2-nil

.

As a finite product of strongly A1-invariant sheaves, the sheaf
Śn

i=1 π
A1

1 (P1) is strongly
A1-invariant, so applying the functors a and (−)2-nil to the above factorization gives us
a map

(7.7) φ : a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → a

( n
ą

i=1

πA1

1 (P1)
)2-nil ∼= n

ą

i=1

πA1

1 (P1).

We claim that φ is generated by commutators in the following sense:

Lemma 7.14. Let φ : a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil →
Śn

i=1 π
A1

1 (P1) be the map constructed
in Equation 7.7. Let K := kerφ.

(i) There is a surjection ⊕
i ̸=j

a(πA1

1 (P1)ab ⊗ πA1

1 (P1)ab)→ K

defined by summing (using the group law on K) the maps

a(πA1

1 (P1)ab ⊗ πA1

1 (P1)ab)→ K

which are given over U ∈ Smk by

πA1

1 (P1)(U)⊗ πA1

1 (P1)(U))→ K

γ1 ⊗ γ2 7→ [πA1

1 (ιi)(γ1), π
A1

1 (ιj)(γ2)].

(ii) The map φ induces a central extension

1→ K → a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil φ−→

n
ą

i=1

πA1

1 (P1)→ 1.
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Proof. Since a is a left adjoint, a preserves epimorphisms and pushouts. We may thus
apply a to Diagram 7.5 with G := πA1

1 (P1) to obtain a pushout of the form

(7.8)
a
(⊕

i ̸=j(π
A1

1 (P1)ab ⊗ πA1

1 (P1)ab)
)

a
((

˚n
i=1 π

A1

1 (P1)
)2-nil)

1 a
(

Śn
i=1 π

A1

1 (P1)
)
.

Let K ′ denote the image of the map

a
(⊕

i ̸=j

(
πA1

1 (P1)ab ⊗ πA1

1 (P1)ab
))
→ a

(( n
˚
i=1

πA1

1 (P1)
)2-nil)

,

which produces an extension

(7.9) 1→ K ′ → a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)→ a

( n
ą

i=1

πA1

1 (P1)
) ∼= n

ą

i=1

πA1

1 (P1)→ 1.

Here, the last isomorphism follows from the fact that πA1

1 (P1) (and hence
Śn

i=1 π
A1

1 (P1))
is strongly A1-invariant. Note that K ′ receives a surjection from a

(⊕
i ̸=j

(
πA1

1 (P1)ab ⊗
πA1

1 (P1)ab
))

by construction. Applying (−)2-nil (and recalling that πA1

1 (P1) and finite
products thereof are 2-nilpotent), the extension given in Equation 7.9 surjects onto the
extension

1→ K → a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → n

ą

i=1

πA1

1 (P1)→ 1.

It follows that a
(⊕

i ̸=j

(
πA1

1 (P1)ab ⊗ πA1

1 (P1)ab
))
→ K is a surjection, as claimed.

For (ii), it remains to see that K is central in a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil. But commutators
are always central in 2-nilpotent extensions, so the centrality of K follows from (i) and
the 2-nilpotence of a((˚n

i=1 π
A1

1 (P1))2-nil)2-nil. □

Next, we will describe how πA1

1 (∨ifi) (see Notation 7.12) depends only on its value in
Gm when restricted to the kernel K. To do so, we need to introduce more notation.

Notation 7.15. Since πA1

1 (P1) is a sheaf of 2-nilpotent groups, Remark 7.10 implies that
there is an induced map

(7.10) µ : Gm ⊗Gm → KMW
2

which is defined on U ∈ Smk by

Gm(U)⊗Gm(U)→ KMW
2 (U)

α1 ⊗ α2 7→ [θ(α1), θ(α2)].

Here, θ : Gm → πA1

1 (P1) is the section of the central extension (Equation ??) coming
from the equivalence ΩΣGm ≃ ΩP1.
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Lemma 7.16. Let f1, . . . , fn : P1
k → P1

k be endomorphisms of P1
k. Let mi := rank degu(fi)

for each i. Then the restriction of the morphism

πA1

1 (∨ifi) : a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → πA1

1 (P1)

to K ≤ a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil fits in the commutative diagram⊕
i ̸=j a(π

A1

1 (P1)ab ⊗ πA1

1 (P1)ab) K πA1

1 (P1)

⊕
i ̸=j Gm ⊗Gm

⊕
i ̸=j Gm ⊗Gm KMW

2 .

⊕
i ̸=j(℘⊗℘)

πA1
1 (∨ifi)|K

⊕
i̸=j(mi⊗mj)

⊕
i ̸=j µ

Proof. We must show that the two maps⊕
i ̸=j

a(πA1

1 (P1)ab ⊗ πA1

1 (P1)ab)→ πA1

1 (P1)

are equal. Since πA1

1 (P1) is strongly A1-invariant, it suffices to show that their precom-
positions with⊕

i ̸=j

(πA1

1 (P1)ab ⊗ πA1

1 (P1)ab)→
⊕
i ̸=j

a(πA1

1 (P1)ab ⊗ πA1

1 (P1)ab)

are equal. Fix U ∈ Smk and p < q. For γ1, γ2 ∈ πA1

1 (P1)(U), the tensor γ1⊗γ2 determines
an element (γ1 ⊗ γ2)p,q in the (p, q)th summand of

⊕
i ̸=j(π

A1

1 (P1)ab ⊗ πA1

1 (P1)ab). Let
(γ1 ⊗ γ2)p,q,K denote the image of (γ1 ⊗ γ2)p,q in K. Applying πA1

1 (∨ifi), we compute

πA1

1 (∨ifi)(γ1 ⊗ γ2)p,q,K = [πA1

1 (fp)(γ1), π
A1

1 (fq)(γ2)]

= µ(℘(γ1)
mp , ℘(γ2)

mq).

This last equality follows from Lemma 7.1 and the existence of the map µ. □

7.3. Proving Theorem 1.1. We are almost ready to prove Theorem 1.1, which is an
algebraic characterization of the D-sum in full generality. We need a few final lemmas.

Lemma 7.17. Let c1 and c2 be good pinch maps. Then ∆c1,c2 := (ρ ◦ πA1

1 (c1))(ρ ◦
πA1

1 (c2))
−1 determines a homomorphism of sheaves of groups

∆c1,c2 : π
A1

1 (P1)→ K.

Proof. Let U ∈ Smk. Mapping γ ∈ πA1

1 (P1)(U) to ∆c1,c2(γ) := (ρ ◦ πA1

1 (c1))(γ)(ρ ◦
πA1

1 (c2))
−1(γ) determines a map of sheaves of sets

πA1

1 (P1)→ a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil

.

Recall the map

φ : a
(( n

˚
i=1

πA1

1 (P1)
)2-nil)2-nil → n

ą

i=1

πA1

1 (P1)
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given in Equation 7.7. Since c1 and c2 are good pinch maps, we have

φ ◦ πA1

1 (cj) = (1, . . . , 1) : πA1

1 (P1)→
n

ą

i=1

πA1

1 (P1)

for j = 1, 2. It follows that ρ ◦∆c1,c2 = 0, so Lemma 7.14 implies that ∆c1,c2 is in fact a
map of sheaves of sets

∆c1,c2 : π
A1

1 (P1)→ K.

It remains to show that ∆c1,c2 is a homomorphism. For notational simplicity, let g :=

ρ ◦ πA1

1 (c1) and h = ρ ◦ πA1

1 (c2), so that ∆c1,c2 = gh−1. Note that ρ and πA1

1 (c) for any
good pinch map c are homomorphisms of group sheaves, so their composite is as well.
Thus for any γ1, γ2 ∈ πA1

1 (P1)(U), we have that

g(γ1γ2)h(γ1γ2)
−1 = g(γ1)g(γ2) · h(γ2)−1h(γ1)

−1

= g(γ1)h(γ1)
−1 · g(γ2)h(γ2)−1.

For the last equality, we use the fact that K(U) is central in a((˚n
i=1 π

A1

1 (P1))2-nil)2-nil

and that gh−1(γ2) ∈ K(U). Thus ∆c1,c2 is a homomorphism as claimed. □

Recall that ⋎D and c+ are good pinch maps. We will now relate πA1

1 (∨ifi) ◦∆⋎D,c+ to
the divisorial sum of f1, . . . , fn.

Notation 7.18. Let D = {r1, . . . , rn} ⊂ A1
k(k). Given elements (β1, d1), . . . , (βn, dn) ∈

GWu(k) with mi := rank βi for each i, define⊕
Dalg

((β1, d1), . . . , (βn, dn)) :=
( n⊕

i=1

βi,
n∏

i=1

di ·
∏
i<j

(ri − rj)
2mimj

)
∈ GWu(k).

Given unstable pointed A1-homotopy classes of maps f1, . . . , fn : P1
k → P1

k, let⊕
D

(degu(f1), . . . , deg
u(fn)) := degu

(∑
D

(f1, . . . , fn)
)
.

To simplify notation, we will often write⊕
Dalg

(fi) :=
⊕
Dalg

(degu(f1), . . . , deg
u(fn)),⊕

D

(fi) :=
⊕
D

(degu(f1), . . . , deg
u(fn)).

Note that Theorem 1.1 is equivalent to the statement
⊕

D(fi) =
⊕

Dalg(fi).

For integers m1, . . . ,mn, let

βm1,...,mn,D :=
(
0,
∏
i<j

(ri − rj)
2mimj

)
∈ GWu(k).
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Lemma 7.19. Let f1, . . . , fn ∈ [P1
k,P1

k] with mi := rank degu(fi) for each i. Then we
have an equality

(7.11) (πA1

1 (∨ifi) ◦∆⋎D,c+)π
A1

1 (βm1,...,mn,D) = πA1

1

(⊕
D

(fi)
)
πA1

1

(⊕
Dalg

(fi)
)−1

as maps of sheaves of sets πA1

1 (P1) → KMW
2 . Moreover, both of these maps are homo-

morphisms of sheaves of groups.

Proof. Consider the good pinch maps c1 = ⋎D (Example 7.5) and c2 = c+ (Example 7.4).
By definition, we have

(7.12) πA1

1

(⊕
D

(fi)
)
= πA1

1 ((∨ifi) ◦ c1).

By Corollary 7.2 and the fact that the simplicial pinch gives the group law on GWu(k)
[Caz12, Lemma 3.20 and Theorem 3.21], we have

(7.13) πA1

1

(⊕
Dalg

(fi)
)
= πA1

1 ((∨ifi) ◦ c2)πA1

1 (βm1,...,mn,D),

with πA1

1 (βm1,...,mn,D) lying in the image of KMW
2 . Using the factorization proven in

Proposition 7.11, we now have

πA1

1

(⊕
D

(fi)
)
= πA1

1 (∨ifi) ◦ (ρ ◦ πA1

1 (c1)),

πA1

1

(⊕
Dalg

(fi)
)
= (πA1

1 (∨ifi) ◦ (ρ ◦ πA1

1 (c2)))π
A1

1 (βm1,...,mn,D).

The difference of these equalities is

πA1

1

(⊕
D

(fi)
)
πA1

1

(⊕
Dalg

(fi)
)−1

= (πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D),

giving the claimed equality of maps of sheaves of sets. By Lemmas 7.8 and 7.17, the
map

(πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D)

is a homomorphism of sheaves of groups, completing the proof. □

Our next lemma states that if
⊕

D(fi) =
⊕

Dalg(fi) for some f1, . . . , fn, then the same is
true for any f ′

1, . . . , f
′
n satisfying rank degu(fi) = rank degu(f ′

i). This is what will enable
us to use Theorem 1.2 as the base case of an induction argument.

Lemma 7.20. Let D = {r1, . . . , rn} ⊂ A1
k(k). Suppose we have two collections of

endomorphisms

f1, . . . , fn ∈ [P1
k,P1

k],

f ′
1, . . . , f

′
n ∈ [P1

k,P1
k]
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such that rank deg(fi) = rank deg(f ′
i) for each i. If⊕

D

(degu(f1), . . . , deg
u(fn)) =

⊕
Dalg

(degu(f1), . . . , deg
u(fn)),

then we have ⊕
D

(degu(f ′
1), . . . , deg

u(f ′
n)) =

⊕
Dalg

(degu(f ′
1), . . . , deg

u(f ′
n)).

Proof. By Morel’s anabelian theorem (Equation 7.1), it is enough to show that

πA1

1 (
⊕
D

(f ′
i) = πA1

1 (
⊕
Dalg

(f ′
i).

Let c1 = ⋎D and c2 = c+. By Lemma 7.19, we have

(πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D) = πA1

1

(⊕
D

(fi)
)
πA1

1

(⊕
Dalg

(fi)
)−1

,

(πA1

1 (∨if ′
i) ◦∆c1,c2)π

A1

1 (βm1,...,mn,D) = πA1

1

(⊕
D

(f ′
i)
)
πA1

1

(⊕
Dalg

(f ′
i)
)−1

.

Now Lemmas 7.16 and 7.17 imply that (πA1

1 (∨ifi)◦∆c1,c2)π
A1

1 (βm1,...,mn,D) only depends on
rank degu(f1), . . . , rank deg

u(fn), and analogously for (πA1

1 (∨ifi)◦∆c1,c2)π
A1

1 (βm1,...,mn,D).
In particular, our assumption that rank degu(fi) = rank degu(f ′

i) implies that

(πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D) = (πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D)

Since
⊕

D(fi) =
⊕

Dalg(fi) by assumption, it follows that

(πA1

1 (∨ifi) ◦∆c1,c2)π
A1

1 (βm1,...,mn,D) = 0,

namely the trivial map to the identity element in KMW
2 . We have thus proven that

πA1

1

(⊕
D

(f ′
i)
)
πA1

1

(⊕
Dalg

(f ′
i)
)−1

,

so πA1

1 (
⊕

D(f
′
i)) = πA1

1 (
⊕

Dalg(f ′
i)). □

Corollary 7.21. Let D = {r1, . . . , rn} ⊂ A1
k(k). Let

f1, . . . , fn ∈ [P1
k,P1

k]

satisfy rank deg(fi) > 0 for all i. Then⊕
D

(degu(f1), . . . , deg
u(fn)) =

⊕
Dalg

(degu(f1), . . . , deg
u(fn)).

Proof. Let mi := rank deg(fi) for each i. By Lemma 7.20 and Proposition 6.5, it suffices
to construct a pointed rational map f : P1

k → P1
k with vanishing locus D such that

rank deguri(f) = mi for each i. The map f :=
∏n

i=1(x − ri)
mi satisfies these criteria,

e.g. by Lemma 3.10. □
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We now come to the lemma embodying the inductive step of our proof of Theorem 1.1.
The idea is to increment the rank of one of degu(f1), . . . , degu(fn).

Notation 7.22. Let δij denote the Kronecker delta, defined by

δij =

{
1 i = j,

0 i ̸= j.

Lemma 7.23. Let c1 and c2 be good pinch maps. Fix ℓ ∈ {1, . . . , n}. Suppose we have
two collections of endomorphisms

f1, . . . , fn ∈ [P1
k,P1

k],

f ′
1, . . . , f

′
n ∈ [P1

k,P1
k]

such that rank degu(fi) = rank degu(f ′
i) for each i ̸= ℓ. By abuse of notation, we write

fℓ + ⟨1⟩u to denote an endomorphism with unstable degree degu(fℓ) + ⟨1⟩u, and similarly
for f ′

ℓ + ⟨1⟩u. Then we have an equality

πA1

1 (∨i(fi + δiℓ⟨1⟩u)) ◦∆c1,c2 − πA1

1 (∨ifi) ◦∆c1,c2 =

πA1

1 (∨i(f ′
i + δiℓ⟨1⟩u)) ◦∆c1,c2 − πA1

1 (∨if ′
i) ◦∆c1,c2

are equal as maps πA1

1 (P1)→ KMW
2 .

Proof. As before, let m : Gm → Gm denote the map z 7→ zm for each integer m. For
each pair of integers mi,mj, we can then form the maps

mi ⊗mj : Gm ⊗Gm → Gm ⊗Gm.

Note that we have an equality (mi + 1) ⊗mj = mi ⊗mj + 1 ⊗mj of such maps, and
hence an equality ⊕

i ̸=j

(mi + δiℓ)⊗mj =
⊕
i ̸=j

mi ⊗mj +
⊕
i ̸=j

δiℓ ⊗mj

=
⊕
i ̸=j

mi ⊗mj +
⊕
j ̸=ℓ

1⊗mj

of maps ⊕
i ̸=j

Gm ⊗Gm →
⊕
i ̸=j

Gm ⊗Gm.

Now let mi := rank degu(fi) for each i. We will show that

πA1

1 (∨i(fi + δiℓ⟨1⟩u)) ◦∆c1,c2 − πA1

1 (∨ifi) ◦∆c1,c2

only depends on m1, . . . ,mℓ−1,mℓ+1, . . . ,mn. Our arguments will imply the same result
when replacing the fi with the f ′

i , which will give the desired result.
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Let σ :
⊕

i ̸=j a(π
A1

1 (P1)ab ⊗ πA1

1 (P1)ab) → K denote the epimorphism of Lemma 7.14.
Using Lemma 7.16, we compute that πA1

1 (∨i(fi + δiℓ⟨1⟩u)) ◦ σ is equal to

(7.14) πA1

1 (∨ifi) ◦ σ +
(⊕

i ̸=j

µ
)
◦
(⊕

j ̸=ℓ

1⊗mj

)
◦
(⊕

j ̸=ℓ

℘⊗ ℘
)
.

Note that (⊕
i ̸=j

µ
)
◦
(⊕

j ̸=ℓ

1⊗mj

)
◦
(⊕

j ̸=ℓ

℘⊗ ℘
)

only depends on m1, . . . ,mℓ−1,mℓ+1, . . . ,mn and is thus independent of mℓ. By Lemma 7.17,
we have a homomorphism

∆c1,c2 : π
A1

1 (P1)→ K.

Together with Equation 7.14 and the fact that σ is an epimorphism, it follows that

πA1

1 (∨i(fi + δiℓ⟨1⟩u)) ◦∆c1,c2 − πA1

1 (∨ifi) ◦∆c1,c2

only depends on m1, . . . ,mℓ−1,mℓ+1, . . . ,mn. □

We can now put everything together and prove Theorem 1.1.

Proof of Theorem 1.1. Our goal is to show that for any f1, . . . , fn ∈ [P1
k,P1

k], we have⊕
D(fi) =

⊕
Dalg(fi). By Morel’s anabelian theorem (Equation 7.1), this is equivalent to

proving that πA1

1 (
⊕

D(fi)) = πA1

1 (
⊕

Dalg(fi)), which is what we will achieve after setting
up our induction argument.

By Corollary 7.21, we have
⊕

D(fi) =
⊕

Dalg(fi) whenever each degu(fi) has positive
rank; this is the base case of our induction. For the inductive hypothesis, assume that
we have (m1, . . . ,mn) ∈ Zn such that

⊕
D(fi) =

⊕
Dalg(fi) whenever rank degu(fi) ≥ mi

for each i.

We wish to show that if f1, . . . , fn ∈ [P1
k,P1

k] satisfy rank degu(fℓ) = mℓ − 1 for some
1 ≤ ℓ ≤ n and rank degu(fi) = mi for i ̸= ℓ, then

⊕
D(f) =

⊕
Dalg(f). Let gℓ ∈ [P1

k,P1
k]

be an endomorphism such that degu(gℓ) = degu(fℓ)+ ⟨1⟩u, which exists since GWu(k) ∼=
[P1

k,P1
k]. Let gi := fi for all i ̸= ℓ. By our inductive hypothesis, we have

(7.15)
⊕
D

(gi) =
⊕
Dalg

(gi).

Thus Lemma 7.19 gives us

(7.16) (πA1

1 (∨igi) ◦∆⋎D,c+)π
A1

1 (βm1,...,mℓ+1,...,mn,D) = 0.

Similarly, we have

(7.17) (πA1

1 (∨i(gi + δiℓ)) ◦∆⋎D,c+)π
A1

1 (βm1,...,mℓ+2,...,mn,D) = 0.

Now Lemma 7.23 implies that

πA1

1 (∨i(fi + δiℓ⟨1⟩u)) ◦∆⋎D,c+ − πA1

1 (∨ifi) ◦∆⋎D,c+ =

πA1

1 (∨i(gi + δiℓ⟨1⟩u)) ◦∆⋎D,c+ − πA1

1 (∨igi) ◦∆⋎D,c+ .
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Equation 7.16, Equation 7.17, and Lemma 7.8 give us

πA1

1 (∨i(gi + δiℓ⟨1⟩u)) ◦∆⋎D,c+ − πA1

1 (∨igi) ◦∆⋎D,c+ =

−πA1

1 (βm1,...,mℓ+2,...,mn,D) + πA1

1 (βm1,...,mℓ+1,...,mn,D) =

πA1

1 (−βm1,...,mℓ+2,...,mn,D + βm1,...,mℓ+1,...,mn,D).

We can now directly calculate the unstable part of−βm1,...,mℓ+2,...,mn,D+βm1,...,mℓ+1,...,mn,D,
which is ∏

i ̸=j

(ri − rj)
2(mi+δiℓ)mj ·

∏
i ̸=j

(ri − rj)
−2(mi+2δiℓ)mj =

∏
j ̸=ℓ

(rℓ − rj)
−2mj .

In particular, we have

(7.18) πA1

1 (∨i(f ′
i + δiℓ⟨1⟩u)) ◦∆⋎D,c+ − πA1

1 (∨if ′
i) ◦∆⋎D,c+ = πA1

1

((
0,
∏
j ̸=ℓ

(rℓ− rj)
−2mj

))
.

Since fi + δiℓ⟨1⟩u = gi for all i, Equations 7.16 and 7.18 imply that

πA1

1 (∨ifi) ◦∆⋎D,c+ = −πA1

1 (βm1,...,mℓ+1,...,mn,D)− πA1

1

((
0,
∏
j ̸=ℓ

(rℓ − rj)
−2mj

))
= −πA1

1 (βm1,...,mℓ,...,mn,D),

where the last equality follows from Lemma 7.8. Thus

(πA1

1 (∨ifi) ◦∆⋎D,c+)π
A1

1 (βm1,...,mn,D) = 0,

so πA1

1 (
⊕

D(fi)) = πA1

1 (
⊕

Dalg(fi)) by Lemma 7.19. □

Appendix A. Code

Here is some code that calculates duplicants and the square root of the ordinary dis-
criminant. We used this code to conjecture a closed formula for the duplicant, which we
then proved in Theorem 5.7.

def coefficients(f,N):
# deal with constant term
coeffs = [f.subs(x=0)]
# append other coefficients
for i in range(1,N):

coeffs.append(f.coefficient(x^i))
return(coeffs)

def vand(n): # compute sqrt(disc(r0 ,...,r(n-1)))
r = var(’r’,n=n)
factors = []
for i in range(n):

for j in range(i+1,n):
factors.append(r[i]-r[j])

return(prod(factors ))
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def dupl(n,e): # compute duplicant
x = var(’x’)
r = var(’r’,n=n)
N = sum(e)
coeff_list = []

for i in range(n):
for j in range(1,e[i]+1):

# generate f/(x-r_i)^j
e_new = e.copy()
e_new[i] = e[i]-j
f = prod ([(x-r[l])^ e_new[l]\

for l in range(n)]). expand ()
coeff_list.append(coefficients(f,N))

# compute det^2 of coefficient matrix
coeff_matrix = matrix(coeff_list)
return(coeff_matrix.det ()^2)
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