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Abstract. Over the complex numbers, there are 92 plane conics meeting 8 general
lines in projective 3-space. Using the Euler number and local degree from motivic
homotopy theory, we give an enriched version of this result over any perfect field. This
provides a weighted count of the number of plane conics meeting 8 general lines, where
the weight of each conic is determined the geometry of its intersections with the 8 given
lines. As a corollary, real conics meeting 8 general lines come in two families of equal
size.

1. Introduction

The space of plane conics in P3 is 8 dimensional. If we require that a conic intersects a
given line, we impose one condition and lose one degree of freedom on the space of plane
conics. As a result, the space of plane conics meeting 8 general lines is a 0 dimensional
Noetherian scheme and is therefore a finite set. A classical theorem of enumerative
geometry gives the cardinality of this set.

Theorem 1.1. Let k be an algebraically closed field with char k 6= 2. Given 8 lines in
general position in P3

k, there are 92 plane conics meeting all 8 lines. Moreover, each of
these plane conics is smooth. (See e.g. [Ful98, Ex. 3.2.22] or [EH16, Theorem 9.26].)

As with many results in classical enumerative geometry, this theorem is only true over an
algebraically closed field. The A1-enumerative geometry program seeks to generalize such
theorems using various tools from motivic homotopy theory.1 We give an A1-enumerative
generalization of Theorem 1.1.

We start with some notation. Let k be a perfect field with char k 6= 2. Given a conic
q ⊂ P3

k, let k(q) be its field of definition. Let GW(k) be the Grothendieck–Witt group of
isomorphism classes of symmetric, non-degenerate bilinear forms over k. Given a ∈ k×,
let 〈a〉 ∈ GW(k) be the bilinear form given by (x, y) 7→ axy. Finally, let Trk(q)/k :
GW(k(q))→ GW(k) be induced by the field trace.

Theorem 1.2. Let L1, . . . , L8 be lines in general position in P3
k. Let Q be the set of all

plane conics in P3
k meeting L1, . . . , L8. Then

46〈1〉+ 46〈−1〉 =
∑
q∈Q

Trk(q)/k〈aq〉,(1.1)
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1See [KW21,Lev20,LR20,BKW20,SW21,LV21,McK21,Pau22,CDH20] for some examples or [Bra21,
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where aq ∈ k(q)× is a constant determined by the conic q, the intersections Li ∩ q, and
the tangent lines TLi∩qq for 1 ≤ i ≤ 8.

Theorem 1.2 gives some insight into real conics meeting 8 general lines. Hauenstein and
Sottile showed that over R, there can be 2n real conics meeting 8 lines for 0 ≤ n ≤ 45
[HS12, Table 6]. Griffin and Hauenstein completed this result by constructing 8 lines
over R such that all 92 conics meeting these lines are real [GH15, Theorem 1]. Our
work illuminates a small amount of extra structure on this set of 2n conics. Taking
the signature of Equation 1.1 yields Theorem 5.3, which states that the 2n real conics
meeting 8 general lines fall into two families of n conics.

1.1. General approach and outline. Our goal is to prove an equality in GW(k), the
Grothendieck–Witt group of isomorphism classes of non-degenerate symmetric bilinear
forms over k. One side of this equation will be given by an Euler number [KW21,BW21],
which is valued in GW(k) in the context of motivic homotopy theory. The other side
of this equation will consist of a sum of local contributions, which are analogs of the
local Brouwer degree [Mor12,KW19,KW21]. The final step is to find a formula for these
local contributions in terms of the geometry at hand – in our case, the geometry of lines
meeting a plane conic.

In order to make use of Euler numbers and local degrees, we need to phrase our enu-
merative problem in terms of a vector bundle over a scheme parameterizing conics in P3.
This has been done classically [EH16, Chapter 9.7]. We will recall the relevant details
here.

Terminology. Typically, a line, plane, or conic over a field k refer to these objects as
varieties over k. We will only work with lines defined over the base field k in this
article. However, we will work with planes and conics over finite extensions of k. These
planes and conics arise as closed points in their parameter spaces. For example, a point
H ∈ G(2, 3) in the Grassmannian of 2-planes in P3

k represents a 2-plane in P3
k′ , where

k′ is the residue field of H. Similarly, a point (H, q) in the Hilbert scheme of conics
represents a degree 2 curve defined over k′ contained in a 2-plane in P3

k′ , where k′ is the
residue field of (H, q). We may thus refer to the residue field of (H, q) as the field of
definition of the conic represented by (H, q).

Space of conics. Let k be a field. The Hilbert scheme Hilb2t+1(P3
k) is the moduli scheme

parameterizing conics in P3
k. However, it will be more convenient for us to work with a

different presentation of this moduli space. Any subscheme of P3
k with Hilbert polynomial

2t+1 is the complete intersection of a plane and a quadric surface. If the conic is reduced,
this plane is uniquely determined by three non-colinear points on the conic. If the conic
is a double line defined over k, then we may use a k-linear change of coordinates such
that the support of the double line is {x0 = x1 = 0}. By standard considerations
on the Hilbert polynomial, we deduce that the double line must have defining ideal
(x2

0, x0x1, x
2
1, x0f(x2, x3) + x1g(x2, x3)), where f, g ∈ k[x2, x3] are in fact constants. It

follows that the plane V(x0f + x1g) is again uniquely determined by the conic. Putting
these cases together, we get a morphism Hilb2t+1(P3

k) → G(2, 3), where G(2, 3) is the
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Grassmannian of 2-planes in P3
k. The fiber of this map is the space of conics in the plane,

namely Hilb2t+1(P2
k).

Let S be the universal subbundle of G(2, 3). Consider the symmetric bundle Sym2(S∨)
of planar quadratic forms, which is a rank 6 vector bundle over G(2, 3) ∼= P3

k. The
points of the projective bundle P Sym2(S∨)→ G(2, 3) correspond to projective classes of
homogeneous quadratic polynomials on planes in P3

k. By the universal property of Hilbert
schemes, we thus get a morphism φ : P Sym2(S∨)→ Hilb2t+1(P3

k). Moreover, since each
conic in P3

k uniquely determines its plane, the map φ is a bijection of points. Finally,
since Hilbert schemes respect base change and Hilb2t+1(P3

k
) is smooth and irreducible, it

follows that Hilb2t+1(P3
k) is also smooth and irreducible [Sta18, Lemma 05B5 and Lemma

038I]. We now conclude by Zariski’s main theorem that φ is an isomorphism. We will
use X := P Sym2(S∨) → G(2, 3) as our presentation of the moduli space of conics in
P3
k. The rational points of X are of the form (H, q), where H ∈ G(2, 3) is a plane and
q ∈ P Sym2(H∨) is the projective class of a homogeneous quadratic polynomial on H
(whose vanishing defines a conic on H).

Conics meeting a line. Next, we need a vector bundle on X with a global section that
vanishes precisely on conics that meet a given line. We will define such a (line) bundle
and section on an open subset U ⊆ X such that codim(X\U) ≥ 2. Since X is smooth,
X satisfies Serre’s S2-criterion for extending coherent sheaves. In particular, we can
extend coherent sheaves over U to coherent sheaves over X. In order to promote such
an extension of coherent sheaves to an extension of vector bundles, we would need to
verify that the coherent sheaf on X extending our vector bundle on U is locally free of
finite rank. This is automatic when the bundle on U is a line bundle, which is the case
at hand.

Moreover, since X is a projective bundle over a smooth projective k-scheme, X is itself a
smooth projective k-scheme. One can thus show that depthI(L) ≥ 2 for any line bundle
L → X, where I is the ideal of the closed complement X\U . It follows that

H0
X\U(X,L) = H1

X\U(X,L) = 0,

so the long exact sequence

· · · → H i
X\U(X,L)→ H i(X,L)→ H i(U,L|U)→ H i+1

X\U(X,L)→ · · ·

yields an isomorphism H0(X,L) ∼= H0(U,L|U). In particular, we can extend global
sections of line bundles over codimension 2 subsets in X.

Let L ∈ G(1, 3). The locus of planes H ∈ G(2, 3) such that L ⊂ H forms a pencil
P ⊂ G(2, 3) of dimension 1. Thus the locus U := π−1(G(2, 3)\P ) ⊆ X is an open subset
(and hence subscheme) whose complement is of codimension at least 2. At the level
of points, U consists of pairs (H, q), where H is a plane not containing L and q is the
projective class of a homogeneous quadratic polynomial on H.

Consider the morphism α : U → L given by L ∩ π|U(−). At the level of points, we have
α(H, q) = L ∩H. Vanishing at a point imposes a linear condition on the space of plane
conics, so we have a subbundle QL ⊆ P Sym2(S∨) whose fiber over H ∈ π(U) is the

https://stacks.math.columbia.edu/tag/05B5
https://stacks.math.columbia.edu/tag/038I
https://stacks.math.columbia.edu/tag/038I
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space Q(H)L∩H ∼= P4
k of projective classes of homogeneous quadratic polynomials on H

that vanish at L ∩H. By construction, we have a short exact sequence

0→ QL → OU(−1)→ α∗OL(2)→ 0.

It follows that the bundle morphism OU(−1)→ α∗OL(2) is given by the evaluation map
evL(H, q) 7→ q mod Q(H)L∩H . Equivalently, the zero section z ∈ H0(U,OU(−1)) and
the evaluation map evL : OU(−1)→ α∗OL(2) yield a global section evL ◦ z of

Hom(OU(−1), α∗OL(2)) ∼= OU(1)⊗ α∗OL(2)

that vanishes precisely on conics that intersect L. On points, this section is given by the
formula evL ◦ z(H, q) = q(L∩H). By our assumption that L meets every plane in π(U)
transversely, we have an isomorphism of bundles

α∗OL(2) ∼= (π|U)∗OG(2,3)(2).

Extending this line bundle and the section evL◦z across the complement of U , we obtain
the line bundle E := OX(1)⊗ π∗OG(2,3)(2)→ X and global section σL. Given 8 general
lines L1, . . . , L8 ∈ G(1, 3), the section σ :=

⊕8
i=1 σLi

: X → E⊕8 vanishes precisely on
conics that meet each L1, . . . , L8.

A1-enumerative count. The classical count of conics meeting 8 general lines in P3
C is

given by
∫
X
c1(E)8 = 92 [EH16, Section 9.7.3]. The enriched count of conics meeting

8 general lines over a field k is given by the Euler number e(E⊕8) ∈ GW(k), which we
can compute using a result of Srinivasan and Wickelgren [SW21, Proposition 19]. This
Euler number is equal to a sum of local information over the set of conics (H, q) meeting
L1, . . . , L8 [KW21, Theorem 3]:

(1.2) e(E⊕8) =
∑

(H,q)∈σ−1(0)

ind(H,q)(σ).

After computing the Euler number in Lemma 3.2, we will address the local indices
ind(H,q)(σ). Given a conic (H, q) in an affine neighborhood U ⊂ X, we will give invert-
ible Nisnevich coordinates ϕ−1

U : U → A8
k and local trivializations (post-composed with

projection) ψU : E⊕8|U → U × A8
k → A8

k in Section 3.1. The local index ind(H,q)(σ) is
equal to the local A1-degree degA1

ϕ−1
U (H,q)

(ΦU) of the composite

ΦU := ψU ◦ σ ◦ ϕU : A8
k → A8

k

at a zero (H, q) ∈ U . In Section 4, we give an alternate formula for degA1

ϕ−1
U (H,q)

(ΦU) in
terms of the intersection points Li ∩ H and tangent lines of the conic V(q) ∩ H. By
replacing ind(H,q)(σ) in Equation 1.2 with our alternate formula in terms of geometric
information, we recover Theorem 1.2. We conclude with a discussion of real conics in
Section 5.
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We also thank Yupeng Li for his collaboration on an early stage of this project. We
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2. Background in A1-enumerative geometry

In classical enumerative geometry, one is interested in (possibly weighted) integer-valued
counts of geometric objects. For example, if Q is the set of plane conics meeting 8 general
lines in P3

C, then

92 =
∑
q∈Q

1.(2.1)

In A1-enumerative geometry, we replace such integer-valued counts with bilinear form-
valued counts. We will show that if Q is the set of plane conics meeting 8 general lines
in P3

k over a perfect field k, then

46〈1〉+ 46〈−1〉 =
∑
q∈Q

Bq.(2.2)

Here, the bilinear form 〈a〉 : k × k → k is given by (x, y) 7→ axy. The weight Bq is a
bilinear form determined by geometric information associated to the plane conic q (see
Section 4). By taking field invariants, we can recover enumerative equations over specific
fields. For example, taking the rank of Equation 2.2 recovers Equation 2.1, while taking
the signature of Equation 2.2 yields a new theorem (Theorem 5.3) giving a weighted
count of conics meeting 8 general lines over R.

2.1. Grothendieck–Witt groups. The significance of bilinear forms in A1-enumerative
geometry stems from Morel’s calculation of the Brouwer degree in A1-homotopy theory
(also known as motivic homotopy theory):

Theorem 2.1. [Mor12, Corollary 1.24] For n ≥ 2, there is a group (and in fact, ring)
isomorphism

degA1

: [Pnk/Pn−1
k ,Pnk/Pn−1

k ]A1

∼=−→ GW(k),

where [−,−]A1 denotes A1-homotopy classes of maps, Pnk/P
n−1
k is a motivic space playing

the role of the sphere, and GW(k) is the Grothendieck–Witt group of isomorphism classes
of symmetric non-degenerate bilinear forms over k.

Morel’s degree map is analagous to the Brouwer degree

deg : [Sn, Sn]
∼=−→ Z.

One can apply Morel’s degree to endomorphisms of An
k to obtain bilinear forms. The

goal of A1-enumerative geometry is to perform this process in such a way that the
resulting bilinear forms encode enumerative information. Later in this section, we will
discuss how to circumvent explicitly using motivic homotopy theory in A1-enumerative
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geometry. First, we briefly discuss GW(k). The Grothendieck–Witt group GW(k) is
actually a ring that admits a nice presentation.

Proposition 2.2. [Lam05, II Theorem 4.1] Let k be a field. Given a ∈ k×, let 〈a〉 be
the isomorphism class of the bilinear form k × k → k defined by (x, y) 7→ axy. Then
GW(k) is the ring generated by all such 〈a〉, subject to the following relations.

(i) 〈ab2〉 = 〈a〉 for all a, b ∈ k×.

(ii) 〈a〉〈b〉 = 〈ab〉 for all a, b ∈ k×.

(iii) 〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉 for all a, b ∈ k× such that a+ b 6= 0.

(iv) 〈a〉+ 〈−a〉 = 〈1〉+ 〈−1〉 for all a ∈ k×.

Relation (iv) actually follows from relations (i) and (iii). Indeed, (iii) implies that 〈−a〉+
〈a− 1〉 = 〈a2 − a〉+ 〈−1〉 and that 〈a〉+ 〈a2 − a〉 = 〈a2〉+ 〈a2(a− 1)〉. Thus by (i), we
have

〈a〉+ 〈−a〉 = 〈a〉+ 〈a2 − a〉+ 〈−1〉 − 〈a− 1〉
= 〈a2〉+ 〈a2(a− 1)〉+ 〈−1〉 − 〈a− 1〉
= 〈1〉+ 〈a− 1〉+ 〈−1〉 − 〈a− 1〉
= 〈1〉+ 〈−1〉.

Definition 2.3. The isomorphism class H := 〈1〉+ 〈−1〉 is called the hyperbolic form.

In order to obtain enumerative statements over a given field, we apply field invariants
to our enumerative equation in GW(k). Field invariants can be thought of as group
homomorphisms GW(k)→ G for some group G. For example:

(i) The rank of a bilinear form induces an isomorphism rank : GW(C)→ Z.

(ii) The signature of a bilinear form (the number of +1s minus the number of −1s on
the diagonal) induces a homomorphism sign : GW(R)→ Z.

(iii) The discriminant of a bilinear form induces a homomorphism disc : GW(Fq) →
Z/2Z when q is a power of an odd prime.

See [Lam05] for a discussion on field invariants for various fields. See [KW21, LV21,
McK21, CDH20] for examples of applying these field invariants to obtain enumerative
statements over specific fields.

2.2. Local A1-degrees. Many results in A1-enumerative geometry are an application
of the Poincaré–Hopf theorem for motivic Euler numbers. The Euler number computes
a fixed element of GW(k), which constitutes the global count of objects in question.
The Poincaré–Hopf theorem then states that this fixed value can be expressed as a sum
of local indices. In general, these local indices are not fixed, but rather record some of
the arithmetic and geometry of the specific objects being counted. Because these local
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indices will be defined in terms of the local A1-degree, we use this section to quickly
survey the relevant construction. See also [KW19] and [WW20, Section 4.2].

Let f : An
k → An

k be a morphism with an isolated zero p ∈ An
k . This induces a map

fp : An
k/(An

k − {p})→ An
k/(An

k − {0})
in the pointed unstable motivic homotopy category H•(k). The source and target of
fp are Thom spaces in H•(k), and the purity theorem of Morel and Voevodsky [MV99]
gives weak equivalences

An
k/(An

k − {p}) ' Pnk/Pn−1
k ∧ Spec k(p)+ and An

k/(An
k − {0}) ' Pnk/Pn−1

k .

If p is k-rational, then we thus have a map

Pnk/Pn−1
k ' An

k/(An
k − {p})

fp−→ An
k/(An

k − {0}) ' Pnk/Pn−1
k

to which we can apply Morel’s A1-degree. In general, we precompose with the collapse
map cp : Pnk/P

n−1
k → Pnk/P

n−1
k ∧ Spec k(p)+, which is defined geometrically via the inclu-

sion Pn−1
k ↪→ Pnk − {p}, yielding the diagram of cofibers Pnk/P

n−1
k → Pnk/(Pnk − {p}).

Definition 2.4. The local A1-degree of a morphism f : An
k → An

k at an isolated zero p,
denoted degp(f) ∈ GW(k), is the A1-degree of the composite

Pnk/Pn−1
k

cp−→ Pnk/Pn−1
k ∧ Spec k(p)+ ' An

k/(An
k − {p})

fp−→ An
k/(An

k − {0}) ' Pnk/Pn−1
k .

Despite its technical definition in terms of motivic homotopy theory, the local A1-
degree admits a convenient commutative algebraic formulation [BMP21] (see also [KW19,
BBM+21]). For our purposes, we will be able to compute all relevant local A1-degrees in
terms of the Jacobian by [KW19, Lemma 9] (which stems from [SS75, (4.7) Korollar]).

2.3. Euler numbers. The Euler numbers that we work with were introduced in [KW21]
and further studied in [BW21]. In this section, we will recall the definition of these
Euler numbers. See [KW21, Section 1.1] and the introduction of [BW21] for a discussion
of related notions of Euler classes and numbers in arithmetic geometry and motivic
homotopy theory.

The most refined definition of the Bachmann–Kass–Wickelgren Euler number (hereafter,
simply Euler number) is given via coherent duality. We will follow [BW21, Section 2.1]
in our review of the details. To begin, we need to recall the notion of relative orientation
of a vector bundle.

Definition 2.5. Let X be a k-scheme, and let V → X be a vector bundle. A relative ori-
entation of V → X is a line bundle L → X and an isomorphism ρ : Hom(detV ∨, ωX)

∼=−→
L⊗2. We say that V → X is relatively orientable if a relative orientation of V → X
exists.

Now suppose that X is a smooth proper k-scheme of dimension n with structure map f :
X → Spec k. Let V → X be a relatively orientable vector bundle of rank n with relative
orientation (ρ,L). This relative orientation defines an isomorphism ρ′ : detV ∨ ⊗L⊗2 →
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ωX , and coherent duality defines a trace map ηf : Hn(X,ωX)→ k. For each 0 ≤ i, j ≤ n,
we thus get a perfect pairing βi,j : H i(X,∧jV ∨ ⊗L)⊗Hn−i(X,∧n−jV ∨ ⊗L)→ k given
by the composition

H i(X,∧jV ∨⊗L)⊗Hn−i(X,∧n−jV ∨⊗L)
^−→ Hn(X, detV ∨⊗L⊗2)

ρ′−→ Hn(X,ωX)
ηf−→ k.

On the central term (i.e. when 2i = 2j = n), βi,j is a bilinear form on H i(X,∧jV ∨⊗L).
For all other i, j, the pairing βi,j ⊕ βn−i,n−j is a bilinear form on H i(X,∧jV ∨ ⊗ L) ⊕
Hn−i(X,∧n−jV ∨⊗L). It follows that

∑
0≤i,j≤n(−1)i+jβi,j is a symmetric, non-degenerate

bilinear form over k.

Definition 2.6. The Euler number e(V ) ∈ GW(k) of the vector bundle V → X is the
isomorphism class of the bilinear form

∑
0≤i,j≤n(−1)i+jβi,j.

2.4. Local indices. In classical algebraic topology, a powerful aspect of Euler numbers
is the Poincaré–Hopf theorem. This is a local-to-global principle, which states that
variable local behavior (as measured by local indices) is governed by a fixed global
invariant, namely the Euler number. As proved in [BW21, Theorem 1.1], the Poincaré–
Hopf theorem also holds for these motivic Euler numbers. In this section, we will describe
and discuss local indices for the Euler number. These local indices will be elements of
GW(k) determined by the local behavior of a given section σ along its vanishing locus.

To begin, we need a suitable notion of local coordinates, as well a local trivialization
that are compatible with these coordinates in a precise way. These coordinates and
trivialization will allow us to turn a section σ : X → V of a rank n vector bundle on an
n-dimensional scheme into an endomorphism f : An

k → An
k . We will then compute the

local index of σ at a zero p ∈ X by computing an analog of the local Brouwer degree of
f at the image of p. These ideas and tools were introduced in [KW19,KW21].

Definition 2.7. Let X be a smooth k-scheme of dimension n. Let p ∈ X be a closed
point. Nisnevich coordinates around p consist of a Zariski open neighborhood U ⊆ X
containing p and an étale morphism ϕ : U → An

k that induces an isomorphism k(p) ∼=
k(ϕ(p)) of residue fields.

By [KW21, Lemma 19], there are Nisnevich coordinates around any closed point on any
smooth k scheme of dimension at least 1.

As previously mentioned, we will define the local index of a section in terms of the local
degree of a morphism determined by the section and a choice of a local trivialization
and Nisnevich coordinates. In order to ensure that this local index does not depend on
our choice of coordinates or trivialization, we have to impose the following compatibility
condition. Note that this compatibility also involves the relative orientation used to
define the Euler number of our vector bundle, as outlined in Section 2.3.

Setup 2.8. Let X be a smooth k-scheme of dimension n. Let (U,ϕ) be Nisnevich
coordinates around a closed point p ∈ X. Since ϕ is étale, the pullback by ϕ of the
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standard basis of TAn
k is a basis of TX|U . We denote the dual of this basis by dϕ, whose

determinant det(dϕ) is a basis of det(TX|∨U) = ωX |U .

Now let V → X be a relatively orientable vector bundle with relative orientation (ρ,L).
Let ψ : V |U

∼=−→ U ×An
k

π2−→ An
k be a local trivialization of V , followed by projection away

from the base. We can view ψ as a basis of V |U (ignoring the base U), so det(ψ) is a
basis of det(V |U).

Finally, let η ∈ Hom(detV |∨U , ωX |U) be the homomorphism defined by η(det(ψ)∨) =
det(dϕ). That is, η is the map sending the distinguished basis det(ψ)∨ of det(V |U)∨ (de-
termined by the trivialization ψ) to the distinguished basis det(dϕ) of ωX |U (determined
by the Nisnevich coordinates (U,ϕ)).

Definition 2.9. Assume the notation of Setup 2.8. The local trivialization ψ of V |U is
said to be compatible with the relative orientation (ρ,L) and the Nisnevich coordinates
(U,ϕ) if ρ(η) = `⊗ ` for some ` ∈ L.

Roughly speaking, the compatibility condition given in Definition 2.9 states that chang-
ing our choice of Nisnevich coordinates, local trivialization, or relative orientation, pro-
vided that these data are compatible with each other, will only change the local index of
a section by a square. Our local index will be valued in GW(k), so such squares will be
trivial by Proposition 2.2 (i). By [McK22, Proposition 5.5], we can always find a local
trivialization compatible with our chosen Nisnevich coordinates.

Heuristically, we define the local index as follows. Let V → X be a relatively orientable
vector bundle with a section σ : X → V . Let p ∈ X be an isolated zero of σ, and
let (U,ϕ) be Nisnevich coordinates around p. Finally, let ψ : V |U → An

k be a local
trivialization that is compatible with the given Nisnevich coordinates and some given
relative orientation of V → X. If ϕ : U → An

k were an isomorphism, we could form the
composite

f := ψ ◦ σ|U ◦ ϕ−1 : An
k → An

k .

The morphism f would vanish at the point ϕ(p). We then define the local index indp σ
to be the local A1-degree of f at ϕ(p). Of course, if ϕ is not an isomorphism, then ϕ−1

does not exist. Nevertheless, the assumption that p is an isolated zero of σ means that
OV(σ),p is a zero-dimensional ring. In particular, the inverse ϕ−1 exists up to some power
of the ideal corresponding to p. Using this, one can show that OV(σ),p is isomorphic as a
local ring to

k[x1, . . . , xn]ϕ(p)/(f1, . . . , fn)

for some polynomial map f = (f1, . . . , fn) : An
k → An

k [KW21, Lemma 27]. The presen-
tation of this local ring canonically determines a bilinear form [SS75] whose isomorphism
class is degϕ(p)(f) [KW19,BBM+21].

Definition 2.10. The local index of σ : X → V at p is

indp(σ) := degϕ(p)(f)
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where f is the morphism determined by our choice of Nisnevich coordinates, relative
orientation, and compatible local trivialization. By [KW21, Corollary 31], the local
index is independent of these choices.

3. Coordinates, trivializations, and relative orientability

Let X = P Sym2(S∨) and E = OX(1)⊗π∗OG(2,3)(2) (where π : X → G(2, 3) is projection
to the base), as described in Section 1.1. We first prove that E⊕8 → X is relatively
orientable.

Lemma 3.1. The vector bundle E⊕8 → X is relatively orientable.

Proof. In order to show that E⊕8 → X is relatively orientable, we need to show that
detE⊕8 ⊗ ωX is the tensor square of a line bundle, where ωX is the canonical bundle of
X. Since E⊕8 is a direct sum of line bundles, we have detE⊕8 ∼= OX(8)⊗ π∗OG(2,3)(16).

Given a vector bundle V → Y of rank r, the canonical bundle of π : PV → Y is given
by

ωPV ∼= OPV (−r)⊗ π∗ detV ∨ ⊗ π∗ωY .(3.1)

This can be computed via the short exact sequence of tangent bundles

0→ TPV/Y → TPV → π∗TY → 0

and the tautological exact sequence

0→ OPV (−1)→ π∗V → Q→ 0,

where Q is the tautological quotient bundle of PV → Y .

Before applying Equation 3.1 to X = P Sym2(S∨) → G(2, 3), we need to calculate
det Sym2(S∨)∨ and ωG(2,3). Since G(2, 3) ∼= P3, we have ωG(2,3)

∼= OG(2,3)(−4). Recall
that if E is a vector bundle of rank r, then det Symn(E) = (det E)⊗(r+n−1

r ). Since S∨
has rank 3 and det(S) ∼= OG(2,3)(1), we have det Sym2(S∨)∨ = (detS)⊗4 ∼= OG(2,3)(4).
Equation 3.1 thus gives us

ωX ∼= OX(−6)⊗ π∗OG(2,3)(4)⊗ π∗OG(2,3)(−4)
∼= OX(−6).

Thus detE⊕8⊗ωX ∼= OX(2)⊗π∗OG(2,3)(16) ∼= (OX(1)⊗π∗OG(2,3)(8))⊗2, as desired. �

Since E⊕8 is relatively orientable and of rank equal to the dimension of X = P Sym2(S∨),
this bundle has a well-defined Euler number. We now compute the Euler number e(E⊕8)
using [SW21, Lemma 5 and Proposition 19], which will constitute the fixed global count
of conics meeting 8 general lines.

Lemma 3.2. The vector bundle E⊕8 → X has Euler number e(E⊕8) = 46 ·H.
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Proof. Apply [SW21, Proposition 19] with V := E⊕7 and V ′ := E. It follows that e(E⊕8)
is of the form n ·H, which has rank 2n. Taking the rank of this Euler number recovers
the classical count

∫
X
c1(E)8 = 92 [SW21, Lemma 5], so we have e(E⊕8) = 46 ·H. �

The Euler number e(E⊕8) gives us half of our desired enumerative formula. In order
to complete this enumerative formula, we need to express e(E⊕8) as a sum of local
contributions (see [KW21, Theorem 3]). To start, recall the section σ : X → E⊕8

(described in Section 1.1) whose vanishing locus corresponds to the set of conics meeting
8 general lines L1, . . . , L8 ⊂ P3

k. Our enumerative formula comes from computing the
local indices ind(H,q)(σ) in the decomposition

e(E⊕8) =
∑

(H,q)∈σ−1(0)

ind(H,q)(σ).

Our next step is to give Nisnevich coordinates for X and local trivializations of E⊕8 that
are compatible with the relative orientation implicit in Lemma 3.1.

3.1. Nisnevich coordinates and local trivializations. In order to compute the local
index ind(H,q)(σ) of a conic (H, q) meeting the lines L1, . . . , L8, we need to describe
Nisnevich coordinates for X = P Sym2(S∨) and local trivializations of E⊕8.

3.1.1. Coordinates. Since X is a P5
k-bundle over G(2, 3) ∼= P3

k, the standard affine covers
of P3

k and P5
k yield a convenient affine cover of X. However, we will need to slightly

modify the standard cover of P5
k for our purposes. Let Ui = {xi 6= 0} ⊂ P3

k. Let
Vj = {`j 6= 0} ⊂ P5

k, where

`j =


xj 0 ≤ j ≤ 2,

x1 + x2 + x3 j = 3,

x0 + x2 + x4 j = 4,

x0 + x1 + x5 j = 5.

Let ui : Ui → A3
k and vj : Vj → A5

k be given by

[x0 : · · · : x3] 7→ (x0
xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , x3

xi
) and

[x0 : · · · : x5] 7→ (x0
`j
, . . . ,

xj−1

`j
,
xj+1

`j
, . . . , x5

`j
),

respectively. Then ui × vj : Ui × Vj → A8
k are affine coordinates on P3

k × P5
k. Since X is

affine-locally isomorphic to P3
k×P5

k, the affine coordinates (Ui×Vj, ui× vj) induce affine
coordinates (Wij, wij) on X. Note that v−1

j is given by

(x0
`j
, . . . ,

xj−1

`j
,
xj+1

`j
, . . . , x5

`j
) 7→ [x0

xj
: · · · : xj−1

`j
: 1− `j−xj

`j
:
xj+1

`j
: · · · : x5

`j
]

for 3 ≤ j ≤ 5, where `j−xj
`j

is the sum of two coordinates in (x0
`j
, . . . ,

xj−1

`j
,
xj+1

`j
, . . . , x5

`j
).

Proposition 3.3. The affine coordinates wij : Wij → A8
k are Nisnevich coordinates on

X.
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Proof. Under the affine-local isomorphism X ∼= P3
k×P5

k, it suffices to prove the statement
for the affine coordinates (Ui × Vj, ui × vj). But ui : Ui → A3

k and vj : Vj → A5
k are

isomorphisms and are hence étale morphisms that induce isomorphisms of residue fields
on closed points. �

Since the coordinates wij : Wij → A8
k are isomorphisms, we can also consider the inverse

maps ϕij := w−1
ij : A8

k → Wij. Using the isomorphisms G(2, 3) ∼= P3
k and P Sym2(H∨) ∼=

P5
k (where H ∈ G(2, 3)), we can describe ϕij at the level of points by parameterizing

homogeneous quadratic polynomials on planes in P3
k.

Notation 3.4. Given a polynomial f over k, let [f ] denote the equivalence class of all
k× multiples of f .

Notation 3.5. Let a = [a0 : a1 : a2 : a3] ∈ P3
k, and let b = [b0 : · · · : b5] ∈ P5

k. Let
Ha = V(

∑3
i=0 aixi), which defines the isomorphism P3

k → G(2, 3). The isomorphism
P5
k → P Sym2(H∨a ) is given by choosing coordinates [y0 : y1 : y2] on Ha and assigning

b 7→ qb(y0, y1, y2) := [b0y
2
0 + b1y

2
1 + b2y

2
2 + b3y1y2 + b4y0y2 + b5y0y1].

Since there is no canonical dual basis for a given plane, there is no canonical isomor-
phism P5

k → P Sym2(H∨). In defining ϕij : A8
k → Wij, we choose the isomorphism

P5
k → P Sym2(H∨) that conforms with a particular choice of dual bases for the planes in
π(Wij) ⊂ G(2, 3).

Proposition 3.6. Let 0 ≤ i ≤ 3 and 0 ≤ j ≤ 5. Let αi = u−1
i and βj = v−1

j . Then on
k-points, ϕij : A8

k → X is given by

(a1, a2, a3, b1, · · · , b5) 7→ (Hαi(a1,a2,a3), qβj(b1,··· ,b5)(yi0, yi1, yi2)),

where [yi0 : yi1 : yi2] = [x0 : . . . : x̂i : . . . : x3].

Proof. Since Ha : P3
k → G(2, 3) and qb : P5

k → P Sym2(H∨) yield the desired isomor-
phisms, it remains to treat the choice of coordinates on H as this plane changes. The
coordinates [yi0 :yi1 :yi2] are the standard coordinates of the plane V(xi) ⊂ P3

k. Since the
plane Hαi(a1,a2,a3) surjects onto V(xi) under projection, [yi0 :yi1 :yi2] are indeed projective
coordinates on Hαi(a1,a2,a3). By construction, our choice of coordinates on Hαi(a1,a2,a3) is
constant on Wij. �

Remark 3.7. Since the Grassmannian G(2, 3) and the space of conics X respect base
change, Proposition 3.6 also describes ϕij on k′-points for any finite extension k′ of k.

3.1.2. Trivializations. Next, we give local trivializations ψij : E⊕8|Wij
→ Wij×A8

k. We do
this by describing local trivializations ψ′ij : E|Wij

→ Wij×A1
k and setting ψij =

⊕8
`=1 ψ

′
ij.

(Later, we will conflate ψij with the composite E⊕8|Wij
→ Wij × A8

k → A8
k.) To define

ψ′ij, it suffices to construct a non-vanishing section τij : Wij → E|Wij
. We will accomplish

this by choosing a line Tij such that the evaluation section evTij ◦ z : Wij → E|Wij
is

non-vanishing.
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Definition 3.8. Let [yi0 : yi1 : yi2] = [x0 : · · · : x̂i : · · · : x3]. For 0 ≤ i ≤ 3 and 0 ≤ j ≤ 2,
let Tij := V({yi`} 6̀=j). For 0 ≤ i ≤ 3 and 3 ≤ j ≤ 5, let Tij := V(yi,j−3, yim − yin), where
m < n and {j − 3,m, n} = {0, 1, 2}. These lines are chosen so that

Tij ∩Ha =



[−a1 : a0 : 0 : 0] (i, j) = (0, 0),

[−a2 : 0 : a0 : 0] (i, j) = (0, 1),

[−a3 : 0 : 0 : a0] (i, j) = (0, 2),
...

[a3 : 0 : 0 :−a0] (i, j) = (3, 0),

[0 : a3 : 0 :−a1] (i, j) = (3, 1),

[0 : 0 : a3 :−a2] (i, j) = (3, 2),



[−a2 − a3 : 0 : a0 : a0] (i, j) = (0, 3),

[−a1 − a3 : a0 : 0 : a0] (i, j) = (0, 4),

[−a1 − a2 : a0 : a0 : 0] (i, j) = (0, 5),
...

[a3 : a3 : 0 :−a0 − a1] (i, j) = (3, 3),

[a3 : 0 : a3 :−a0 − a2] (i, j) = (3, 4),

[0 : a3 : a3 :−a1 − a2] (i, j) = (3, 5).

Next, let τij := evTij ◦ z : Wij → E|Wij
(see Section 1.1). On points, this section is given

by
τij(Ha, qb) = ((Ha, qb), qb mod Q(Ha)Tij∩Ha),

where Q(Ha)Tij∩Ha is the space of homogeneous quadratic polynomials on Ha that vanish
on Tij ∩Ha. By construction, qb does not vanish on Tij ∩Ha for (Ha, qb) ∈ Wij, since

qb(Tij ∩Ha) =


a2
i bj 0 ≤ j ≤ 2,

a2
i (b1 + b2 + b3) j = 3,

a2
i (b0 + b2 + b4) j = 4,

a2
i (b0 + b1 + b5) j = 5

and

Q(Ha)Tij∩Ha
∼=


{bj = 0} 0 ≤ j ≤ 2,

{b1 + b2 + b3 = 0} j = 3,

{b0 + b2 + b4 = 0} j = 4,

{b0 + b1 + b5 = 0} j = 5.

Thus τij is a non-vanishing section on Wij and hence determines a local trivialization of
E|Wij

.

3.2. Compatibility. Using our Nisnevich coordinates wij = ϕ−1
ij and local trivializa-

tions ψij, we will compute the local index ind(H,q)(σ) in terms of the local A1-degree
degA1

wij(H,q)(ψij ◦ σ ◦ ϕij) via Definition 2.10. In order to do this, we need to certify that
the trivialization ψij is compatible with the Nisnevich coordinates wij and the relative
orientation

Hom(det(E⊕8)∨, ωX)|Wij
∼= (OX(1)⊗ π∗OG(2,3)(8))⊗2|Wij

from Lemma 3.1. First, let det dwij ∈ H0(Wij, ωX) be the non-vanishing section deter-
mined by our Nisnevich coordinates on Wij. Let

γij : Hom(det(E⊕8)∨, ωX)|Wij

∼=−→ Hom(det(E⊕8)∨,OX(−6))|Wij
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be the isomorphism induced by the isomorphism ωX |Wij
∼= OX(−6)|Wij

sending det dwij
to the non-vanishing local section (ai, `j)

−6 ∈ H0(Wij,OX(−6)). Let

δij : Hom(det(E⊕8)∨,OX(−6))|Wij

∼=−→ OX(8)⊗ π∗OG(2,3)(16)⊗OX(−6)|Wij

∼=−→ (OX(1)⊗ π∗OG(2,3)(8))⊗2|Wij

be the isomorphism given by sending

[detψ∨ij 7→ (ai, `j)
−6] 7→ (ai, `j)

8 ⊗ π∗(a2
i )

8 ⊗ (ai, `j)
−6

7→ ((ai, `j)⊗ π∗(ai)8)⊗2.

Proposition 3.9. The local trivializations ψij are compatible with the Nisnevich coordi-
nates wij and the relative orientation

$ij := δij ◦ γij : Hom(detE⊕8, ωX)|Wij

∼=−→ (OX(1)⊗ π∗OG(2,3)(8))⊗2|Wij
.

Proof. By construction, we have $ij([detψ∨ij 7→ det dwij]) = ((ai, `j)⊗ π∗(ai)8)⊗2, which
is a tensor square as desired. �

4. Local contributions

We now compute the local index ind(H,q)(σ) of a conic (H, q) meeting the lines L1, . . . , L8.
By [KW21, Definition 30 and Corollary 31], the local index is equal to the local A1-degree
degA1

wij(H,q)(Φij) of the composite

Φij := ψij ◦ σ ◦ ϕij

for any i, j such that (H, q) ∈ Uij. (Here, ψij is the local trivialization E⊕8|Wij
→ Wij×A8

k

post-composed with the projection Wij × A8
k → A8

k.) By [EH16, Proposition 9.25], all
zeros of Φij are simple, so local degree can be computed by the Jacobian determinant
of Φij evaluated at wij(H, q) [KW19, Lemma 9]. Since k is assumed to be perfect, the
field of definition k(q) of (H, q) is separable over k, so [KW21, Proposition 34] implies
that we can compute the local index by base changing and post-composing with the
field trace Trk(q)/k (see also [BBM+21, Theorem 1.3]). As a result, we have the following
proposition.

Proposition 4.1. Let k(q) be the field of definition of (H, q) ∈ Wij, let Trk(q)/k be the
field trace, and let Jac(Φij) be the determinant of the Jacobian matrix of Φij. Then

ind(H,q)(σ) = Trk(q)/k〈Jac(Φij)|wij(H,q)〉.

Our goal in this section is to interpret Jac(Φij)|wij(H,q) in terms of geometric information
intrinsic to the conic (H, q) and the lines L1, . . . , L8. To simplify notation, let Φn

ij =

ψ′ij ◦σLn ◦ϕij, so that Φij = (Φ0
ij, . . . ,Φ

8
ij). On points (which is the generality needed for
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our computations), the evaluation section can be computed as evL ◦ z(H, q) = q(L∩H).
As a function of (a1, a2, a3, b1, . . . , b5) ∈ A8

k, we can thus write out Φn
ij:

Φn
ij(a1, . . . , b5) =

σn(Hαi(a1,a2,a3), qβj(b1,...,b5))

τij(Hαi(a1,a2,a3), qβj(b1,...,b5))

=
qβj(b1,...,b5)(Ln ∩Hαi(a1,a2,a3))

qβj(b1,...,b5)(Tij ∩Hαi(a1,a2,a3))

=



z2
1 + b1z

2
2 + b2z

2
3 + b3z2z3 + b4z1z3 + b5z1z2 j = 0,

b1z
2
1 + z2

2 + b2z
2
3 + b3z2z3 + b4z1z3 + b5z1z2 j = 1,

b1z
2
1 + b2z

2
2 + z2

3 + b3z2z3 + b4z1z3 + b5z1z2 j = 2,

b1z
2
1 + b2z

2
2 + b3z

2
3 + (1− b2 − b3)z2z3 + b4z1z3 + b5z1z2 j = 3,

b1z
2
1 + b2z

2
2 + b3z

2
3 + b4z2z3 + (1− b1 − b3)z1z3 + b5z1z2 j = 4,

b1z
2
1 + b2z

2
2 + b3z

2
3 + b4z2z3 + b5z1z3 + (1− b1 − b2)z1z2 j = 5,

(4.1)

where (z1, z2, z3) is a preferred affine representative of the point Ln ∩Hαi(a1,a2,a3). While
the coordinates of this point are a priori only defined up to a scalar, part of the trivial-
ization data is a dehomogenization of these coordinates. However, we will not need to
work this out explicitly since the chain rule implies that the partial derivatives ∂Φn

ij

∂a`
will

be independent of scaling (z1, z2, z3).

Remark 4.2. Recall that each qb is not simply a quadratic polynomial, but a projective
class of such polynomials. The scalar action on these classes is cancelled out in the ratio
in Equation 4.1. Similarly, the points Ln ∩Ha and Tij ∩Ha live in the projective plane,
so their coordinates are only defined up to scalars. Again, the trivialization data cancels
out the scalar action on the coordinates of these points, so we get a well-defined function.

4.1. Geometric interpretation. In order to provide a geometric interpretation of
Jac(Φij)|wij(H,q), we will give a geometric interpretation of the partial derivatives ∂Φn

ij

∂a`

and ∂Φn
ij

∂b`
. We will phrase this interpretation in terms of the affine geometry underlying

our projective conics and projective lines; in particular, Hαi(a1,a2,a3) will be an affine 3-
plane instead of a projective 2-plane, Ln will be an affine 2-plane instead of a projective
line, and V(qβj(b1,...,b5)) will be an affine cone instead of a projective conic. We start with
∂Φn

ij

∂b`
. Since Φn

ij are linear in b`, these partial derivatives are straightforward to compute

(see Figure 1). Geometrically, the entries ∂Φn
ij

∂b`
of the Jacobian matrix of Φij at wij(H, q)

are recording the coordinates of the intersections Ln ∩ Hαi(a1,a2,a3) in terms of the co-
ordinates (yi0, yi1, yi2) on the plane Hαi(a1,a2,a3). These coordinates are slightly modified
when 3 ≤ j ≤ 5 and 1 ≤ ` ≤ 3, due to our modified coordinates wij when 3 ≤ j ≤ 5.

Now we consider ∂Φn
ij

∂a`
. Noting that z1, z2, z3 are functions of (a1, a2, a3), we compute ∂Φn

ij

∂a`
via the chain rule:

∂Φn
ij

∂a`
=
∂Φn

ij

∂z1

· ∂z1

∂a`
+
∂Φn

ij

∂z2

· ∂z2

∂a`
+
∂Φn

ij

∂z3

· ∂z3

∂a`
.(4.2)
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`

j 0 1 2 3 4 5
1 z2

2 z2
1 z2

1 z2
1 z2

1 − z1z3 z2
1 − z1z2

2 z2
3 z2

3 z2
2 z2

2 − z2z3 z2
2 z2

2 − z1z2

3 z2z3 z2z3 z2z3 z2
3 − z2z3 z2

3 − z1z3 z2
3

4 z1z3 z1z3 z1z3 z1z3 z2z3 z2z3

5 z1z2 z1z2 z1z2 z1z2 z1z2 z1z3

Figure 1.
∂Φn

ij

∂b`

Equation 4.2 is closely related to the tangent plane in Hαi(a1,a2,a3)
∼= A3

k(q) of V(qβj(b1,...,b5))

at (z1, z2, z3). Indeed, replacing z1, z2, z3 with the projective coordinates yi0, yi1, yi2 ∈
H∨αi(a1,a2,a3) in Equation 4.1, we let

qij := qβj(b1,...,b5) =


z2
i0 + b1z

2
i1 + b2z

2
i2 + b3zi1zi2 + b4zi0zi2 + b5zi0zi1 j = 0,

b1z
2
i0 + z2

i1 + b2z
2
i2 + b3zi1zi2 + b4zi0zi2 + b5zi0zi1 j = 1,

...
b1z

2
i0 + b2z

2
i1 + b3z

2
i2 + b4zi1zi2 + b5zi0zi2 + (1− b1 − b2)zi0zi1 j = 5

be the defining equation for V(qβj(b1,...,b5)) ⊂ Hαi(a1,a2,a3)
∼= A3

k(q) (see Figure 2). Any
conic meeting 8 general lines in P3 is smooth by [EH16, Lemma 9.21], so the affine cone
V(qij) (corresponding to the projective conic V(qij)) is smooth away from the cone point
at the origin (0, 0, 0) ∈ A3

k(q). It follows that the tangent plane TpV(qij) at p := (z1, z2, z3)
is defined by the equation

∂qij
∂yi0

∣∣∣∣
p

· yi0 +
∂qij
∂yi1

∣∣∣∣
p

· yi1 +
∂qij
∂yi2

∣∣∣∣
p

· yi2 = 0.

Since ∂Φn
ij

∂z`
=

∂qij
∂yi,`−1

|p and p lies on the tangent plane TpV(qij), we have

∂Φn
ij

∂a`
=
∂qij
∂yi0

∣∣∣∣
p

(
∂z1

∂a`

)
+
∂qij
∂yi1

∣∣∣∣
p

(
∂z2

∂a`

)
+
∂qij
∂yi2

∣∣∣∣
p

(
∂z3

∂a`

)
=
∂qij
∂yi0

∣∣∣∣
p

(
z1 +

∂z1

∂a`

)
+
∂qij
∂yi1

∣∣∣∣
p

(
z2 +

∂z2

∂a`

)
+
∂qij
∂yi2

∣∣∣∣
p

(
z3 +

∂z3

∂a`

)
.(4.3)

Geometrically, this records information about the slope of the affine plane Ln (corre-
sponding to the projective line Ln) relative to the plane TpV(qij). Indeed, zm + ∂zm

∂a`
is

zm shifted by the rate of change of zm (representing a coordinate of a basis vector in
Ln ∩Hαi(a1,a2,a3)) as a` changes. Equation 4.3 states that (z1 + ∂z1

∂a`
, z2 + ∂z2

∂a`
, z3 + ∂z3

∂a`
) lies

on the level set defined by
∂qij
∂yi0

∣∣∣∣
p

· yi0 +
∂qij
∂yi1

∣∣∣∣
p

· yi1 +
∂qij
∂yi2

∣∣∣∣
p

· yi2 =
∂Φn

ij

∂a`
,

which is parallel to the tangent plane TpV(qij). It follows that
∂Φn

ij

∂a`
measures the deviation

of p+ ∂p
∂a`

from the tangent plane TpV(qij), as illustrated in Figure 3.
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p

Ln ∩Hαi(a1,a2,a3)

V(qij)

Figure 2. V(qij) as a cone in A3
k(q)

p

p+ ∂p
∂a`

TpV(qij)

TpV(qij) + ∂p
∂a`

Figure 3. TpV(qij) and its ∂Φn
ij

∂a`
-level set

Remark 4.3. Like many problems in enumerative geometry, the problem of counting
conics through eight lines in P3 is of lci type. That is, sections of the vector bundle
encoding this enumerative problem are local complete intersection morphisms. The
local indices of such problems can always be interpreted as an intersection volume as
introduced in [McK21] (see also [McK22, Section 5.1]).

However, this intersection volume describes the geometry of certain hypersurfaces in the
parameter space of objects being counted — in the present case, these hypersurfaces sit
within P Sym2(S∨). Generally, this geometry is a step removed from the objects that we
actually want to consider (i.e. the conics themselves). In this article, we have translated
this intersection volume into terms pertaining to the conics being parameterized. Finding
other, more parsimonious geometric descriptions for the local indices of this article would
constitute interesting progress on the geometricity problem [McK22, Question 5.1 and
Appendix C].

5. Real conics meeting 8 lines

Let k = R. If a non-real conic meets 8 general lines in P3
R, then its complex conjugate

meets these 8 lines as well. In particular, the number of real conics meeting the 8
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lines must be an even integer between 0 and 92. By Hauenstein–Sottile [HS12, Table
6] and Griffin–Hauenstein [GH15, Theorem 1], there exist 8 general lines for each 2n ∈
{0, 2, . . . , 92} realizing the count of 2n real conics. It follows from Theorem 1.2 that
these 2n conics come in two families of order n.

Definition 5.1. Let L1, . . . , L8 be 8 general lines in P3
R. A real conic (H, q) meeting

L1, . . . , L8 is called positive (respectively, negative) if Jac(Φij)|wij(H,q) is positive (respec-
tively, negative). Note that this definition implicitly depends on the order of L1, . . . , L8;
permuting these lines by an odd permutation turns a positive conic into a negative conic
(and vice versa).

Remark 5.2. By [EH16, Proposition 9.25], all zeros of Φij are simple and hence

Jac(Φij)|wij(H,q) 6= 0.

Moreover, since we have assumed that (H, q) is real, it follows that Jac(Φij)|wij(H,q) is
real. Finally, Proposition 3.9 implies that Jac(Φij)|wij(H,q) depends on the choice of
Wij 3 (H, q) only up to squares in R. In particular, the sign of this value does not
depend on the choice of Wij, so Definition 5.1 is well-defined.

Theorem 5.3. Given 8 general lines L1, . . . , L8 in P3
R, there are an equal number of

positive and negative real conics meeting L1, . . . , L8.

Proof. The result follows from Theorem 1.2 by taking the signature of

46 ·H =
∑

(H,q)∈σ−1(0)

TrR(q)/R〈Jac(Φij)|wij(H,q)〉.

The signature of TrC/R〈c〉 is 0 for any c ∈ C×, and the signature of 46 · H is likewise 0.
We thus have

0 =
∑

real positive
(H,q)

1 +
∑

real negative
(H,q)

(−1)

= #{positive real conics} −#{negative real conics},
as desired. �
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