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Abstract. We give two geometric interpretations for the local type of a line that is
highly tangent to a hypersurface in a single point. One interpretation is phrased in
terms of the Wronski map, while the other interpretation relates to the fundamental
forms of the hypersurface. These local types are the local contributions of an quadratic
form-valued Euler number that depends on a choice of orientation.

1. Introduction

Over an algebraically closed field, the number of roots of a polynomial, when counted
with multiplicity, is given by its degree. In contrast, the number of real roots is not
determined by the degree. In order to give a count of real roots that depends only
on the degree of the polynomial, the roots must be counted with a sign rather than a
multiplicity (see Figure 1).
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Figure 1. Signed counts of real roots

For polynomials of even degree, this signed count of real roots is always 0. For odd
polynomials, the signed count is ±1. This sign ambiguity can be interpreted as an
artifact of non-orientability: the roots of a polynomial correspond to the intersection of
two plane curves, and Bézout’s theorem is not an orientable problem over non-closed
fields [McK21].

By highly tangent line we mean a line meeting a hypersurface in Pn at a point with
contact order 2n− 1. In this article, we will investigate the geometric weight with which
to count highly tangent lines to the hypersurface. Analogous to the case of real roots of
odd polynomials, this enumerative problem is not orientable in many cases of interest,
so the total count of highly tangent lines depends on the choice of hypersurface. Despite
the lack of invariant total count, we find that this counting weight admits two interesting
descriptions.
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Theorem 1.1 (Wronskian interpretation). Let k be a field. Let X = V(F ) by a smooth,
general hypersurface in Pn

k of degree d ≥ 2n−1. Let Φ be the flag variety of pointed lines
in Pn

k , and let β : Φ → Pn
k send a pointed line to its marked point.

Let L be a line such that the intersection multiplicity of L and X at p is 2n − 1. Then
the local index associated to L is given by the Wronskian determinant (with respect to
the local parameter of L at p) of the gradient ∇β∗F .

Theorem 1.2 (Fundamental form interpretation). Let X be a smooth, general, projective
plane curve, and assume char(k) ̸= 2, 3. Let inf(X) denote the locus of inflectional points
on X. Let II and III denote the second and third fundamental forms of X, respectively.
For each p ∈ inf(X), we have

indpII = Trk(p)/k⟨3 · III(p)⟩.

Moreover, if X is of even degree d and admits a theta characteristic, then∑
p∈inf(X)

Trk(p)/k⟨III(p)⟩ =
3d(d− 2)

2
H,

where H := ⟨1⟩+ ⟨−1⟩.

We will make these theorems more precise in Sections 4 and 5, respectively.

Our work fits into the enriched enumerative geometry program, which consists of qua-
dratic form-valued counts of geometric objects. These counts are usually valid over more
general base fields than just algebraically closed or real fields. Quadratic forms arise as
a result of the tools necessary to work over arbitrary fields — motivic homotopy theory
provides suitable substitutes for Euler numbers and the local Brouwer degree, but these
invariants are valued in the Grothendieck–Witt ring of the base field rather than in Z.

1.1. Outline. The enumerative problem of counting highly tangent (projective) linear
spaces to hypersurfaces can be formulated in terms of a bundle of principal parts over a
flag variety of pointed linear spaces (see e.g. [EH16, §11.1]). In Section 2, we will recall
the construction of this flag variety, which serves as the parameter space of objects that
we will count. We will also discuss standard coordinates on the flag variety. In Section 3,
we will recall the bundle of principal parts, as well as convenient local trivializations of
this bundle. We will also make a few remarks about Euler numbers in this section.

As previously mentioned, the problem we are treating is not orientable. To resolve this,
we need to choose an orienting divisor in our parameter space, which we do in Section 3.1.
We then prove Theorem 1.1 in Section 4.

An alternative formulation of the problem of counting highly tangent lines involves fun-
damental forms. An advantage of this formulation is that the problem is relatively ori-
entable in cases where the bundle of relative principal parts over the flag variety is not
relatively orientable. We will set up the necessary background and prove Theorem 1.2
in Section 5.
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Note that most computations of local indices in the enriched enumerative geometry liter-
ature involve a parameter space whose Nisnevich coordinates are actually isomorphisms,
because the parameter space is covered by affine spaces. In contrast, our computation of
the relevant Euler class in the second approach uses non-trivial Nisnevich coordinates.
So our second approach adds a bit of novelty to the literature.

Acknowledgements. We thank Ethan Cotterill, Steven Kleiman, Marc Levine, Wenbo
Niu, Sabrina Pauli, and Felipe Voloch for useful discussions. SM received support from
an NSF MSPRF grant (DMS-2202825). GM is a member of GNSAGA (INdAM), and
is supported by FCT - Fundação para a Ciência e a Tecnologia, under the project:
UIDP/04561/2020 (https://doi.org/10.54499/UIDP/04561/2020). WO thanks DJ
Merril for help with implementing several of the computations in [MMO24].

2. The parameter space

Consider the Grassmannian Gr(r, n) of projective r-planes in Pn, which can also be
thought of as the space of affine (r+1)-planes through the origin in An+1. Our parameter
space is a flag variety that naturally occurs as an incidence variety over Gr(r, n).

Definition 2.1. Define the flag variety of pointed planes as the incidence variety

Φr,n := {(H, p) ∈ Gr(r, n)× Pn : p ∈ H}.

Note that the variety Φr,n is isomorphic to the projective bundle π : PS → G(r, n), where
S → G(r, n) is the tautological bundle over the affine Grassmannian. We will also use π
when discussing the pair of projections

Φr,n

Gr(r, n) Pn,

π β

which should not cause confusion as Φr,n
∼= PS.

Before discussing coordinates for Φr,n, we mention a few facts about Φr,n that we will
need later. All of these facts are standard computations for projective bundles.

Lemma 2.2. We have dimΦr,n = r(n− r) + n.

Proof. Since Φr,n
∼= PS, we can compute its dimension as a projective bundle over

G(r, n). This gives us

dimPS = dimG(r, n) + rankS − 1

= (r + 1)(n− r) + r + 1− 1

= r(n− r) + n. □

We fix the following notation for the subsequent three lemmas.

Notation 2.3. Let Φ := Φr,n and G := G(r, n). Let ΩΦ/G denote the relative cotangent
bundle of π : Φ → G. Let ωX denote the canonical bundle of a scheme X.

https://doi.org/10.54499/UIDP/04561/2020
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Lemma 2.4. We have ωΦ
∼= OΦ(−r − 1)⊗ π∗OG(−n).

Proof. For any vector bundle V → X of rank v with associated projective bundle
π : PV → X, there is an isomorphism

ωPV ∼= OPV (−v)⊗ π∗ detV ∨ ⊗ π∗ωX .

The result now follows from detS ∼= OG(−1) and ωG
∼= OG(−n−1), which are standard

facts about Grassmannians and their tautological bundles. □

Lemma 2.5. We have rankΩΦ/G = r.

Proof. Since Φ and G are both smooth, we have

rankΩΦ/G = rankΩΦ − rankΩG

= dimΦ− dimG

= r(n− r) + n− (r + 1)(n− r)

= r. □

Lemma 2.6. We have detΩΦ/G
∼= OΦ(−r − 1)⊗ π∗OG(1).

Proof. By the relative Euler sequence

0 → TΦ/G → TΦ → π∗TG → 0,

we have detTΦ/G
∼= detTΦ ⊗ π∗ detT∨

G. Taking duals and applying Lemma 2.4, we find

detΩΦ/G
∼= ωΦ ⊗ π∗ω∨

G

∼= OΦ(−r − 1)⊗ π∗OG(−n)⊗ π∗OG(n+ 1)
∼= OΦ(−r − 1)⊗ π∗OG(1). □

2.1. Coordinates. We need a suitable choice of coordinates on Φr,n in order to describe
the local type of a highly tangent plane to a hypersurface. We will choose coordinates on
Φr,n by exploiting its structure as a projective bundle. In short, we will use the standard
coordinates on G(r, n) for the base and a twist of the standard coordinates on Pr for the
fibers.

Let {e1, . . . , en+1} denote the standard basis for kn+1. Every k-rational point of G(r, n)
can be obtained as the span of a column of the form

(2.1)


x̃1,1 · · · x̃1,n+1

x̃2,1 · · · x̃2,n+1
...

. . .
...

x̃r+1,1 · · · x̃r+1,n+1




e1
e2
...

en+1

 .

This description generalizes beyond the k-points of G(r, n) and gives natural coordinates
for the space. The standard open cover of G(r, n) is given by taking non-vanishing
(r + 1)× (r + 1)-minors.
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More precisely, let 1 ≤ i1 < . . . < ir+1 ≤ n + 1, and denote I = {i1, . . . , ir+1}. Let
{c1, . . . , cn−r} = {1, . . . , n + 1} − I, with c1 < . . . < cn−r. Let UI ⊂ G(r, n) denote the
open set of (r+1)-planes such that det((x̃t,is)

r+1
t,s=1) ̸= 0 (in the parameterization given in

Equation 2.1). By row reducing, all such (r+1)-planes in UI can be obtained by taking
(x̃t,is)

r+1
t,s=1 to be the identity matrix. We thus obtain an isomorphism

φI : UI → Spec k[x1,1, . . . , xr+1,n−r],

under which a point (p1,1, . . . , pr+1,n−r) ∈ Spec k[x1,1, . . . , xr+1,n−r] corresponds to the
span of the vectors

ẽis := eis +
n−r∑
j=1

ps,jecj

for s = 1, . . . , r + 1.

Definition 2.7. The standard coordinates for G(r, n) are the collection of local coordi-
nates {(UI , φI)}I .

Now let ϖ : S → G(r, n) denote the tautological bundle. If H ∈ UI , then H is the
span of {ẽi1 , . . . , ẽir+1} (for some x1,1, . . . , xr+1,n−r) as described above. If we denote the
coordinates of Ar+1 by (y1, . . . , yr+1), then ϖ

−1(H) ∼= Ar+1 parameterizes vectors of the
form

(2.2) v =
r+1∑
s=1

ysẽis ,

as these are precisely the vectors belonging to H. This gives us local coordinates
{(ϖ−1(UI), φI × id)}I on the total space of ϖ : S → G(r, n). To obtain local coordi-
nates on Φr,n

∼= PS, we take a twist of the standard open cover of Pr on the fibers.

Definition 2.8. Let UI,ℓ ⊂ PS be the open set of pairs (H, span(v)), where H ∈ UI

and the coordinate of ẽiℓ in v (from Equation 2.2) is non-zero. Let φI,ℓ := φI × ψℓ,
where ψℓ : {[y1 : · · · : yr+1] : yℓ ̸= 0} → Ar are the twisted affine charts on Pr defined in
[McK21, p. 638]. The standard coordinates for Φr,n

∼= PS consist of the local coordinates
{(UI,ℓ, φI,ℓ)}I,ℓ.

2.2. The case of lines. As we will restrict our attention to the r = 1 case later in this
article, we now make Definition 2.8 a little more explicit in this case. Let

(H, span(v)) =

(
span

{
n+1∑
i=1

x̃1,iei,
n+1∑
i=1

x̃2,iei

}
, span

{
2∑

j=1

yj

n+1∑
i=1

x̃j,iei

})
.

The map β : Φr,n → Pn is given by

(H, span(v)) 7→ span

{
n+1∑
i=1

(y1x̃1,i + y2x̃2,i)ei

}
,
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and the Plücker map composed with π : Φr,n → G(1, n) is given by

(H, span(v)) 7−→ span

{
n∑

i=1

n+1∑
j=i+1

(x̃1,ix̃2,j − x̃1,jx̃2,i)ei ∧ ej

}
.

The open subsets UI,ℓ (where ℓ ∈ {1, 2}) parameterize pairs (H, span(v)) satisfying

x̃1,i1x̃2,i2 − x̃1,i2x̃2,i1 ̸= 0,

y1x̃1,iℓ + y2x̃2,iℓ ̸= 0.

The coordinates φI,ℓ : UI,ℓ → A2(n−2) × A1 are defined by

φI,ℓ(H, span(v)) =

(
φI(H), (−1)ℓ−1 ·

y1x̃1,iℓ′ + y2x̃2,iℓ′
y1x̃1,iℓ + y2x̃2,iℓ

)
,

where ℓ′ is the remaining element of {1, 2} − {ℓ}.

Computing the transition functions of {(UI,ℓ, φI,ℓ)}I,ℓ is a standard computation, the
details of which we will omit. For our purposes, it suffices to know that the determinant
of the Jacobian matrix of φJ,m ◦ φ−1

I,ℓ is given by

(2.3) (−1)ℓ+m

(
x̃1,i1x̃2,i2 − x̃1,i2x̃2,i1
x̃1,j1x̃2,j2 − x̃1,j2x̃2,j1

)n(
y1x̃1,iℓ + y2x̃2,iℓ
y1x̃1,jm + y2x̃2,jm

)2

.

3. The bundle

We will briefly revise the definition of the flag variety Φr,n parameterizes projective r-
planes in Pn equipped with a point. We now need a vector bundle encoding the condition
that such a pointed plane (H, p) meets a hypersurface at the point p to a prescribed order.
Such a bundle is known as the bundle of principal parts [Gro67, Définition (16.3.1)].

Definition 3.1. Let m be a non-negative integer, and X → Y a morphism of smooth
schemes. For i = 1, 2, let pi : X ×Y X → X denote projection onto the ith factor. Let
I∆ denote the ideal sheaf of the diagonal embedding ∆: X ↪→ X ×Y X. The mth bundle
of relative principal parts Pm(L) → X with respect to a line bundle L → X is defined
to be

Pm
X/Y (L) := p2∗(p

∗
1L ⊗OX×Y X/Im+1

∆ ).

Notation 3.2. Throughout this section, we fix Φ := Φ1,n and G := Gr(1, n). To simplify
our indexing, we will use the notation Em+1 := Pm

Φ/G(OΦ(d)).

Recall that a vector bundle V → X is called relatively orientable if there exists a line
bundle L → X such that detV ⊗ ωX

∼= L ⊗ L, where ωX is the canonical bundle of
X. Relative orientability is necessary for V → X to admit a well-defined Euler number
valued in GW(k). It will turn out that Em → Φ is not relatively orientable in our case
of interest, which we now explain.
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To check whether or not Em → Φ is relatively orientable, we need to compute det Em.
Note that E1 = OΦ(d). For any positive integer m, there is an exact sequence

(3.1) 0 −→ OΦ(d)⊗ Symm−1(ΩΦ/G) −→ Em −→ Em−1 −→ 0.

It follows (by induction) that rank Em =
(
r+m−1

r

)
(see e.g. [Vai81, (3.5) Proposition]).

We can now use Equation 3.1 to compute det Em.

Lemma 3.3. Let m be a positive integer. Then

det Em ∼= OΦ

(
d

(
r +m− 1

m− 1

)
− (r + 1)

(
r +m− 1

m− 2

))
⊗ π∗OG

((
r +m− 1

m− 2

))
,

where we set
(

a
−1

)
= 0 for a > 0.

Proof. We argue by induction on m. Note that det E1 = E1 = OΦ(d), as desired. Now
suppose the result holds for some m. By Equation 3.1, we have

det Em+1
∼= det Em ⊗ det(OΦ(d)⊗ Symm(ΩΦ/G)).

Since ΩΦ/G has rank r, the vector bundle Symm(ΩΦ/G) has rank
(
r+m−1

m

)
. Thus

det(OΦ(d)⊗ Symm(ΩΦ/G)) ∼= OΦ

(
d

(
r +m− 1

m

))
⊗ det Symm(ΩΦ/G).

Finally, we have

det Symm(ΩΦ/G) ∼= OΦ

(
(−r − 1)

(
r +m− 1

m− 1

))
⊗ π∗OG

((
r +m− 1

m− 1

))
using standard computations (see e.g. [Har77, Exercise II.5.16(c)] and [Ful98, B.5.8]).
The desired result now follows from the addition rules of binomial coefficients. □

We can now give necessary and sufficient criteria for Em → Φ to be relatively orientable.

Proposition 3.4. The vector bundle Em → Φ satisfies rank Em = dimΦ and is relatively
orientable if and only if the following conditions hold:

r(n− r) + n =

(
r +m− 1

m− 1

)
,(rank condition)

d

(
r +m− 1

m− 1

)
≡ (r + 1)

[(
r +m− 1

m− 2

)
− 1

]
mod 2,(parity of OΦ) (

r +m− 1

m− 2

)
≡ n mod 2.(parity of π∗OG)

Proof. Since dimΦ = dimG + r = r(n − r) + n, the first condition is equivalent to
rank Em = dimΦ.

The Picard group of Φ is generated by π∗OG(1) and OΦ(1) (see e.g. [Har77, Exer-
cise II.7.9(a)]), so Em is relatively orientable if and only if

det Em ⊗ ωΦ = OΦ(A)⊗ π∗OG(B)
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for some even numbers A and B. Since

ωΦ = OΦ(−r − 1)⊗ π∗OG(−n)
and det Em is given in Lemma 3.3, we have the result. □

Remark 3.5. One can check that Em is not orientable if r = 1, as pointed out in
[Mur24a, Remark 6.4]. Using the code of [MMO24], we found that for r,m, n ≤ 5000
and r < n, the conditions of Proposition 3.4 are only satisfied by tuples (d, r,m, n) with
d even and (r,m, n) one of the following:

(3, 5, 11), (3, 21, 445), (3, 37, 2287).

While we are only interested in the r = 1 case for this article, we can say something
about the Euler number when Em → Φ is relatively orientable.

Proposition 3.6. If Em → Φ is relatively orientable with rank Em = dimΦ, then its

Euler number is given by ctop(Em)

2
H, where ctop denotes the top Chern number over C.

Proof. Euler numbers of vector bundles over odd dimensional schemes are hyperbolic
[SW21, Proposition 19], so e(Em) is some multiple of ⟨1⟩+ ⟨−1⟩ whenever dimΦ is odd.
Since rank e(Em) is equal to the complex count (i.e. the top Chern number of Em), the
desired formula will follow if we can show that dimΦ is odd in the relatively orientable
case. We will show the contrapositive.

Let B =
(
r+m−1
m−2

)
. If dimΦ = r(n−r)+n is even, then n and r must both be even. Thus

d(r(n − r) + n) must be even, so (r + 1)(B − 1) must be even as well. It follows that
B must be odd. But this contradicts B ≡ n mod 2, so Em → Φ cannot be relatively
orientable. □

3.1. Orienting divisors. As we have seen, the bundle Em → Φ is often not relatively
orientable, notably in our cases of interest (i.e. when r = 1). In order to resolve this
issue, we will follow the ideas of [LV21] and work relative to a divisor.

Definition 3.7. Let X be a a smooth proper k-scheme X → Spec k. A vector bundle
V over X is said to be relatively orientable relative to a divisor D ⊂ X if there exists
a line bundle L and an isomorphism ρ : detV ⊗ ωX/k ⊗ O(D) → L⊗2. We will refer to
such a divisor as an orienting divisor for V → X.

To find a suitable orienting divisor for Em → Φ, we focus on our case of interest. That is,
set r = 1 and assume that rank Em = dimΦ. This gives us an equality 2n− 1 =

(
m

m−1

)
,

so we find that m = 2n− 1. Under these assumptions, Lemma 3.3 implies that

det E2n−1 ⊗ ωΦ
∼= OΦ(d(2n− 1)− 4n2 + 6n− 4)⊗ π∗OG(2n

2 − 4n+ 1).

For D ⊂ Φ to be an orienting divisor, it therefore suffices to require OΦ(D) ∼= π∗OG(1)
(when d is even) or OΦ(D) ∼= OΦ(1)⊗π∗OG(1) (when d is odd). When d is even, we may
thus takeD ⊂ Φ to be a divisor parameterizing pointed lines meeting a fixed codimension
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2 linear subspace of Pn. When d is odd, we may take D to be a divisor parameterizing
pointed lines that either meet a fixed codimension 2 linear subspace or whose marked
point lies on a fixed codimension 1 hyperplane. We will give explicit descriptions of such
divisors in the next subsection.

Remark 3.8. We conclude this subsection by remarking that while Em admits a well-
defined Euler number (valued in GW(k)) relative to an orienting divisor D, this Euler
number will depend on D. By restricting our attention to k = R, we could investigate
how this Euler number behaves with respect to the configuration of D(R) and the real
points of our hypersurface in question, analogous to [LV21]. However, we will not pursue
this question in this article.

3.2. Trivializations. As a final step before proving our main results, we need to choose
local trivializations of Em and OΦ(D) for an orienting divisor D. We also need to verify
that our chosen trivializations are compatible with the coordinates we gave in Section 2.1.
Throughout this subsection, we fix an open affine UI,ℓ ⊂ Φ over which to work.

Our preferred coordinates on Φ give us a natural choice of trivialization for OΦ(D). The
proof of the following lemma is standard (c.f. [Mur24a, Lemma 3.8 and Proposition 5.1]),
so we opt to omit it.

Lemma 3.9. The line bundle π∗OG(1) is locally trivialized over UI,ℓ by

wi1,i2

w1,2

:=
x̃1,i1x̃2,i2 − x̃1,i2x̃2,i1
x̃1,1x̃2,2 − x̃1,2x̃2,1

.

The line bundle OΦ(1) is locally trivialized over UI,ℓ by

ziℓ
z1

:=
y1x̃1,iℓ + y2x̃2,iℓ
y1x̃1,1 + y2x̃2,1

.

The line bundle det Em is locally trivialized on UI,ℓ by

sI,ℓ :=

(
ziℓ
z1

)N (
wi1,i2

w1,2

)M

,

where N = m(d−m+ 1) and M = m(m−1)
2

.

For our orienting divisor, we may therefore take D = V(w1,2) (when d is even) or D =
V(w1,2 · z1) (when d is odd). The former divisor parameterizes pointed lines meeting a
particular codimension 2 linear subspace H ⊂ Pn, while the latter divisor parameterizes
pointed lines that meet H or whose marked point lies on a particular codimension 1
hyperplane.

For our local trivialization of Em, we again work over an open patch UI,ℓ ⊂ Φ. Assume
r = 1. The short exact sequence in Equation 3.1 implies that Em has a filtration by
successive quotients

(3.2) OΦ(d),OΦ(d)⊗ ΩΦ/G, . . . ,OΦ(d)⊗ Symm−1(ΩΦ/G).
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Since r = 1, we have that OΦ(d)⊗ Syma(ΩΦ/G) is a line bundle for 0 ≤ a ≤ m− 1. We
can obtain a local trivialization

τI,ℓ : Em|UI,ℓ
−→ Am

by locally trivializing the line bundles OΦ(d) ⊗ Syma(ΩΦ/G) for 0 ≤ a ≤ m − 1. Recall
that for any finite rank vector bundle V , we have a canonical isomorphism

(3.3) Syma(V ) ∼= Γa(V ∨)∨,

where Γa denotes ath divided powers and (−)∨ denotes the dual. In particular, we have
Syma(ΩΦ/G) ∼= Γa(TΦ/G)

∨, where TΦ/G is the relative tangent bundle. As

tI,ℓ := y1x̃1,iℓ′ + y2x̃2,iℓ′

is our local coordinate of the fiber P1 → Φ → G, the bundle TΦ/G is locally trivialized
by

∂I,ℓ :=
∂

∂tI,ℓ
.

Moreover, tI,ℓ(L, p) vanishes at p for each (L, p), so tI,ℓ is a local parameter of OL,p.
By Equation 3.3, Syma(ΩΦ/G) is locally trivialized by Γa(∂I,ℓ)

∨. The divided power
differential Γa(∂I,ℓ) is known as the Hasse derivative.

Definition 3.10. The ath Hasse derivative is the generalized derivation

D
(a)
t : k[t] → k[t]

that is determined by the rules

D
(a)
t tn =

{(
n
a

)
tn−a n ≥ a,

0 otherwise.

A key feature of Hasse derivatives is that they satisfy a form of Taylor’s theorem1:

Proposition 3.11. Let X be a k-scheme of dimension 1 with regular closed point p (i.e.
OX,p is a regular local ring). Let t be a local parameter of OX,p. If f ∈ OX,p, then

f =
∞∑
a=0

D
(a)
t f(p) · ta.

Proof. A proof can be found in [Gol03, Corollary 2.5.14]. □

We can now define our local trivializations of Em, which will be given by taking the first
m jets of a section with respect to the Hasse derivative.

1The Hasse derivative can also be defined for partial differentiation with several variables by multi-
indexing. Taylor’s theorem holds in this greater generality, but we will not need this for our purposes.
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Lemma 3.12. Let τI,ℓ : Em|UI,ℓ
→ Am be defined by

τI,ℓ(F, (L, p)) = (F (p), D
(1)
tI,ℓ
F (p), . . . , D

(m−1)
tI,ℓ

F (p))

for each F ∈ OPn(d). Then τI,ℓ is a local trivialization of Em.

Proof. First, note that if (L, p) ∈ UI,ℓ, then tI,ℓ is a local parameter of L at p. Moreover, p
is a regular closed point of L. SinceOΦ(d) ∼= β∗OPn(d), the desired result follows from the
filtration given in Equation 3.2, Taylor’s theorem for Hasse derivatives (Proposition 3.11),
and our observation that Γa(∂I,ℓ)

∨ locally trivializes Syma(ΩΦ/G). □

To conclude, let m = 2n − 1 (so that rank Em = dimΦ1,n). We need to show that our
local coordinates and local trivializations are compatible with our relative orientation of
E2n−1 relative to D. This will immediately follow from Lemma 3.9 once we prove the
following lemma.

Lemma 3.13. Under the isomorphism det Em ∼= OΦ(m(d − m + 1)) ⊗ π∗OG(
m(m−1)

2
),

the trivialization det τI,ℓ is sent to
(

ziℓ
z1

)m(d−m+1) (wi1,i2

w1,2

)m(m−1)/2

.

Proof. The isomorphism det Em ∼= OΦ(m(d −m + 1)) ⊗ π∗OG(
m(m−1)

2
) was constructed

inductively by the isomorphisms

det Ea+1
∼= det Ea ⊗ det(OΦ(d)⊗ Syma(ΩΦ/G)),

and our trivializations τI,ℓ were defined by trivializing each OΦ(d) ⊗ Syma(ΩΦ/G). For
each a, the section

sa :=

(
ziℓ
z1

)d

⊗
(
wi1,i2

w1,2

)a

locally trivializes OΦ(d) ⊗ Syma(ΩΦ/G). The section (
ziℓ
z1
)−2a(

wi1,i2

w1,2
)a is the image of

the trivialization Γa(∂I,ℓ)
∨ of Syma(ΩΦ/G), and thus sa is the image of the section

σa(F, (L, p)) = D
(a)
tI,ℓ
F (p). It follows that

m−1⊗
a=0

σa =

(
ziℓ
z1

)m(d−m+1)(
wi1,i2

w1,2

)m(m−1)/2

,

as desired. □

Remark 3.14. Over the field of complex numbers, the Euler number of Em → Φ is
well-known. See for example [BW25], and [Mur24b, Equation (3.4)] for an approach
using Gromov–Witten invariants.
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4. Wronskian interpretation of the local index

In this section, we give a more precise statement of Theorem 1.1, which we then prove.
Throughout, we assume r = 1 and m = 2n − 1 (as in Section 3.1). Let F be a global
section of OPn(d). Note that β∗OPn(d) ∼= OΦ(d), where β : Φ → Pn is the projection map
arising from Definition 2.1. The degree d hypersurface V(F ) ⊂ Pn determines a section

σF : Φ −→ E2n−1,

which is given on a pointed line (L, p) ∈ Φ by taking the principal parts of the form F
along L ⊂ Pn. In order to compute the local index of this section, we will write out a
formula for the composite

gI,ℓ := τI,ℓ|UI,ℓ
◦ σF ◦ φ−1

I,ℓ |UI,ℓ
: A2n−1 −→ A2n−1

around a zero (L, p) ∈ UI,ℓ ⊂ Φ. Here, (UI,ℓ, φI,ℓ) are standard local coordinates around
(L, p) (Definition 2.8) and τI,ℓ is our chosen local trivialization (Lemma 3.12). After we
have done this, we will compute the local degree deg(L,p)(gI,ℓ) and relate it to the geome-
try of V(F ) and its highly tangent line (L, p). If the highly tangent line is geometrically
simple (i.e. geometrically reduced) and k(L, p)/k is separable, then

(4.1) deg(L,p)(gI,ℓ) = Trk(L,p)/k⟨Jac(gI,ℓ)|(L,p)⟩

by [KW19, Lemma 9].

Theorem 4.1 (Wronskian interpretation, precisely). Let F be a global section of OPn(d)
with d ≥ 2n − 1. Let L be a line that is tangent to V(F ) at p ∈ L to order 2n − 1.
Finally, assume that (L, p) is geometrically reduced as a point in Φ, and that k(L, p)/k
is separable. Then

ind(L,p)σF = Trk(L,p)/k⟨Wrt(∇β∗F )(p)⟩,

where Wrt denotes the Hasse–Wronskian with respect to a local parameter t of L and
∇β∗F denotes the gradient of β∗F with respect to the local coordinates representing
(L, p).

Proof. By [BBM+21], we can assume that k(L, p) = k by base changing and tracing back
down (if necessary). If (L, p) ∈ UI,ℓ, then we have

τI,ℓ ◦ σF ◦ φ−1
I,ℓ(L, p) = (β∗F (p), D

(1)
tI,ℓ
β∗F (p), . . . , D

(2n−2)
tI,ℓ

β∗F (p)).

By Equation 4.1, it suffices to compute the Jacobian of τI,ℓ ◦ σF ◦ φ−1
I,ℓ in terms of the

local coordinates on UI,ℓ. We will treat the case where (L, p) ∈ U(n,n+1),2; the case of
(L, p) ∈ UI,ℓ for arbitrary I, ℓ is completely analogous. To simplify notation, denote
t := t(n,n+1),2.
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On U(n,n+1),2, we have x̃1,nx̃2,n+1 − x̃1,n+1x̃2,n ̸= 0 and y1x̃1,n+1 + y2x̃2,n+1 ̸= 0. Our affine
coordinates on U(n,n+1),2 are given by

x1,i =
x̃1,ix̃2,n+1 − x̃2,ix̃1,n+1

x̃1,nx̃2,n+1 − x̃2,nx̃2,n+1

,

x2,i =
x̃2,ix̃1,n − x̃1,ix̃2,n

x̃1,nx̃2,n+1 − x̃2,nx̃2,n+1

,

y =
y1x̃1,n + y2x̃2,n

y1x̃1,n+1 + y2x̃2,n+1

for 1 ≤ i ≤ n− 1. Note that y is precisely the dehomogenization of our local parameter

t, so that D
(a)
t = D

(a)
y on U(n,n+1),2.

Let [z1 : . . . : zn+1] denote coordinates on Pn. In our coordinates on U(n,n+1),2, the map
β : Φ → Pn is given by

β(x1,1, x2,1, . . . , x1,n−1, x2,n−1, y) = (x1,1y + x2,1, . . . , x1,n−1y + x2,n−1, y),

where we have written this point using the standard coordinates for {zn+1 ̸= 0} ⊂ Pn

(since y1x̃1,n+1 + y2x̃2,n+1 corresponds to zn+1 under β). Thus

β∗F = F (x1,1y + x2,1, . . . , x1,n−1y + x2,n−1, y, 1).

Here, the argument 1 in F corresponds to the fact that we have dehomogenized by
scaling all projective coordinates by 1

zn+1
. We denote the gradient with respect to the

coordinates (x1,1, x2,1, . . . , x1,n−1, x2,n−1, y) by ∇. Recall that D
(a)
t = D

(a)
y on U(n,n+1),2.

One can now check that ∇ and D
(a)
y commute. For example, we have

∂

∂y
D(a)

y ym =
∂

∂y

(
m

a

)
ym−a

=

(
m

a

)
(m− a)ym−a−1,

D(a)
y

∂

∂y
ym = D(a)

y mym−1

= m

(
m− 1

a

)
ym−a−1.

Since
(
m
a

)
(m − a) = m

(
m−1
a

)
, we conclude that ∂

∂y
D

(a)
y = D

(a)
y

∂
∂y
. Verifying that D

(a)
y

commutes with ∂
∂xi,j

is even simpler, as y and xi,j do not depend on one another.

Altogether, we have proved that the Jacobian determinant of (β∗F (p), . . . , D
(2n−2)
t β∗F (p))

is given by the determinant of
∇β∗F (p)

∇D(1)
t β∗F (p)

...

∇D(2n−2)
t β∗F (p)

 =


∇β∗F (p)

D
(1)
t ∇β∗F (p)

...

D
(2n−2)
t ∇β∗F (p)

 .
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The determinant of the latter matrix is precisely the Wronskian of ∇β∗F (with respect
to the Hasse derivative) evaluated at p, which we denote by Wrt(∇β∗F ). □

Remark 4.2. Brazelton has some results on geometrically interpreting Wronskians in
enriched enumerative geometry [Bra25]. The Hasse–Wronskian also arises as the local
index for the enriched count of inflection points to superelliptic curves [CDGL+21],
showing that our Theorem 1.1 is compatible with this result.

5. Highly tangent lines and the second fundamental form

In this section, we will prove Theorem 1.2. First, we need to formulate the problem of
counting highly tangent lines to a plane curve X in terms of the second fundamental
form of X. We will begin with a more general setup, then restrict our attention to curves
when necessary.

Let us suppose X = Spec(A) ⊂ Pn is smooth affine, and let I be the kernel of the product
map A⊗k A→ A. For each m ≥ 0, there is a short exact sequence of left A-modules

(5.1) 0 −→ Im/Im+1 −→ (A⊗k A)/I
m+1 πm−→ (A⊗k A)/I

m −→ 0.

We call the following map of left A-modules the Taylor series map (see [Per95, Propo-
sition 6.4.3])

(5.2) δm : A⊕n+1 −→ (A⊗k A)/I
m+1,

given by sending e1 = (1, 0, 0, . . . , 0) to (the class of) 1⊗a1, e2 = (0, 1, 0, . . . , 0) to 1⊗a2,
and so on. Here, a1, a2, . . . , an+1 are the generators of Γ(Pn,OPn(1)) restricted to X.

When m = 0, we have that (A ⊗k A)/I
m+1 = A, and the map (5.2) is the natural

evaluation map Γ(Pn,OPn(1)) ⊗ OPn(−1) → OPn restricted to X. By the properties of
the kernel, and the fact that πm ◦ δm = δm−1, there exists a map

(5.3) ker(δm−1) −→ Im/Im+1 ∼= SymmΩX ,

called mth fundamental form. We have ker(δ0) ∼= ΩPn|X and ker(δ1) ∼= N∨
X/Pn (see

[Har77, Theorem II.8.13 and Proposition II.8.12]). If X is a smooth projective variety,
those maps naturally glue together on the affine patches of X. We are interested in one
particular fundamental form.

Definition 5.1. Let X ⊂ Pn be a smooth projective variety. The map

II : N∨
X/Pn −→ Sym2ΩX

is called the second fundamental form of X ⊂ Pn. By hom-tensor adjunction, we can
think of II as a global section of the bundle

F := Hom(N∨
X/Pn , Sym2ΩX) ∼= NX/Pn ⊗ Sym2ΩX .

Remark 5.2. The second fundamental form can be constructed by applying [AK70,
Section I.3] to the exact sequence (e.g. [Har77, Theorem II.8.17 (2)]):

(5.4) 0 −→ N∨
X/Pn −→ ΩPn|X −→ ΩX −→ 0.
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In [EN23, MP24], the mth fundamental forms are constructed using the Taylor series
map applied to the bundles of principal part Pm

X/k(OX) [Gro67, Définition (16.3.6)], and
using again the properties of the kernel. They suppose k to be algebraically closed, but
this hypothesis is not really necessary, at least in order to define the fundamental forms2.
Our approach follows [Per95, Appendix A].

We now assume X ⊆ P2 is a curve and characterize when F → X is relatively orientable.

Proposition 5.3. Let X ⊆ P2 be a smooth projective plane curve of degree d. The
following are equivalent.

(1) F is relatively orientable.

(2) OX(1) is a square.

(3) X admits a theta characteristic and d is even.

Proof. Recall that NX/P2
∼= OP2(d)|X = OX(d). Moreover, from the cotangent exact

sequence (5.4), we have

ΩX
∼= det(ΩP2)|X ⊗NX/P2

∼= OX(d− 3),

thus

ΩX ⊗F ∼= Sym3ΩX ⊗NX/P2
∼= OX(2d− 5)⊗2 ⊗OX(1).

This implies that ΩX ⊗F is a square if and only if OX(1) is the square of a line bundle
L. Since d is the degree of OX(1), 2 degL = d implies d even. In this case, we have

ΩX ⊗F ∼= ΩX ⊗ (OX(d/2)⊗ ΩX)
⊗2 .

So, F is orientable if and only if X admits a theta characteristic. □

Remark 5.4. In Proposition 5.3, we cannot drop the hypothesis that X admits a theta
characteristic. For example, a non-singular real plane curve of degree 4 with no real
points has no theta characteristics [Ati71, Section 5]. See also [GH81, Section 5] for a
thorough discussion about theta characteristics of real curves, and [Rön10] for a charac-
terization of the existence of theta characteristic in terms of the splitting of the stable
motivic homotopy type of the curve. If k is algebraically closed, then any non-singular
curve admits theta characteristics [Mum71, Section 4].

An advantage of working with F instead of Em (from earlier in the paper) is that F →
X is relatively orientable in many cases where Em → Φ is not. In order to extract
enumerative information from F , we have a few more tasks at hand. First, we need to
check that the vanishing locus of II corresponds to the locus of points onX at which there
is a highly tangent line. Second, we need to compute the Euler number e(F) ∈ GW(k).
Finally, we need to compute the local index of II at inflectional points.

2Confirmed by Wenbo Niu by a personal communication.
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Definition 5.5. Let X ⊆ P2 be a smooth projective plane curve. Given Y, Z ⊆ P2 and
a point p ∈ Y ∩Z, let ip(Y, Z) denote the intersection multiplicity of Y and Z at p. Let

inf(X) = {x ∈ X : there is a line L ⊆ P2 such that ix(X,L) ≥ 3}

denote the locus of inflectional points on X. Note that this is a geometric definition:
inf(X) is defined over k because X is defined over k, but individual points of inf(X)
may be defined over non-trivial extensions of k.

By construction, the second fundamental form II is a linear system of bilinear forms
on the tangent vector spaces (TX,p)p∈X parameterized by the conormal bundle N∨

X/P2 .

In complex differential geometry, the properties of the second fundamental form are
exploited in the influential paper [Lan94]. As explained on [GH79, p. 367], for k = C
the second fundamental form is degenerate at a point of TX,p if and only if that point
spans a line of P2 meeting X at p with order at least 3. In other words, the zero locus
of the global section II : X → Hom(N∨

X/P2 , Sym
2ΩX) is precisely inf(X).

For arbitrary fields note that the functor ⊗kk̄ is exact, so we may suppose k algebraically
closed. Indeed, Serre’s intersection formula is preserved, see [Har77, Appendix A]. A
geometric interpretation of degenerate locus of II as the locus of inflectional points is
given by [MP24, Section 3] (see also [Per95, Appendix B, Theorem 2.3] and [Pie77]).

It is now straightforward to calculate the Euler number of F in the relatively orientable
case.

Lemma 5.6. If d is even and X admits a theta characteristic, then e(F) = 3d(d−2)
2

H.

Proof. Since F → X is a line bundle over a curve, its Euler number is hyperbolic by
[SW21, Proposition 19]. It thus suffices to compute the rank of e(F), which is given by
the integral Euler number over an algebraically closed field. The claim now follows from
the classical count of 3d(d − 2) inflectional points to a smooth complex plane curve of
degree d [Har77, Exercise IV.2.3]. □

To conclude, we prove Theorem 1.2 by computing the local index of II. This will be
given in terms of the third fundamental form

III : R3 −→ Sym3ΩX ,

where R3 is the sheaf associated to the module ker(δ2).

Proof of Theorem 1.2. The latter equation follows from the first by the Poincaré–Hopf
Theorem (see e.g. [BW23, Theorem 1.1]) and the fact that ⟨3⟩H = H, so it remains to
treat the first equation. Using the same notation at the beginning of this section, assume
X = Spec(A) is localized at a smooth k-point. The ideal I is free of rank one, so it is
generated by dz := z ⊗ 1− 1⊗ z for some z ∈ A. There exists an isomorphism

(A⊗k A)/I
3 ∼= A3
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sending (a⊗ b) to a(b, ∂zb, ∂
2
zb, ∂

3
zb), where ∂zb is defined as that element of A such that

(b⊗ 1− 1⊗ b)m = ∂mz b(dz)
m.

In our case, ∂mz b = D
(m)
z b are the Hasse derivatives of the regular element b with respect

to the local parameter z (see [Per95, Note 6.4.2]). Thus, in this particular open subset,
the second and third fundamental forms are given by (∂2zb)dz⊗dz and (∂3zb)dz⊗dz⊗dz,

respectively. Since ∂
∂z
D

(n)
z = (n+ 1)D

(n+1)
z , it follows that Jac(II)|p = 3 · III(p).

Recall that the zero locus of II is the locus of inflectional points inf(X). Because X is
a smooth general curve, inf(X) is zero dimensional and reduced. This implies that

(5.5) indpII = Trk(p)/k⟨Jac(II)|p⟩
(see e.g. [KW21, p. 692]). By base changing to k(p), working k(p)-rationally, and then
applying the field trace, we may assume (without loss of generality) that all zeros of II
are k-rational.

Equation (5.5) only makes sense once we have chosen a Nisnevich coordinate on X
and a compatible local trivialization of F . We will explain why our prior argument is
independent of our choice of coordinate and trivialization. By [KW21, Proposition 20],
we always have Nisnevich coordinates (U,φ) about p, where φ : U → A1. By intersecting
with our affine neighborhood Spec(A), we may assume that U = Spec(A). The map φ
corresponds to a local parameter t of Spec(A), and dt := t ⊗ 1 − 1 ⊗ t will generate
the ideal I. We may therefore take z to be the local parameter determined by our
Nisnevich coordinate. Finally, one can always obtain a trivialization of F compatible
with (U,φ) by [McK22, Proposition 5.5]. In the present case, this can be done by picking
a non-vanishing local section of the line bundle F and rescaling if necessary. □

Remark 5.7. Higher fundamental forms for algebraic varieties made their first appear-
ance in work of Griffiths and Harris [GH79], and were later generalized by several authors
[Teg92, Lan98, EN23, MP24]. It would be interesting to try extending the results of this
section to hypersurfaces in higher-dimensional projective spaces. One of the first hurdles
to such a generalization is that the sheaves used to define higher fundamental forms need
not be vector bundles.
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(4) 4 (1971), 181–192. MR 292836
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