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Abstract. We prove that the enumerative geometry of lines on smooth cubic surfaces
is governed by the arithmetic of the base field. In 1949, Segre proved that the number
of lines on a smooth cubic surface over any field is 0, 1, 2, 3, 5, 7, 9, 15, or 27. Over a
given field, each of these line counts may or may not be realized by some cubic surface.
We give a sufficient criterion for each of these line counts in terms of the Galois theory
of the base field.

1. Introduction

In 1849, Cayley and Salmon proved that every smooth cubic surface over C contains
exactly 27 complex lines [Cay49]. By 1858, Schläfli had proved that every smooth cubic
surface over R contains exactly 3, 7, 15, or 27 real lines [Sch58], with each of these
counts occurring for some real cubic surface. Following this theme, B. Segre classified
all possible rational line counts for smooth cubic surfaces over Q in 1949 [Seg49].

Theorem 1.1 (Segre). Every smooth cubic surface over Q contains 0, 1, 2, 3, 5, 7, 9,
15, or 27 lines defined over Q. Moreover, each of these counts is realized by some smooth
cubic surface over Q.

B. Segre further showed in loc. cit. that the line counts in Theorem 1.1 are the only
possible line counts for smooth cubic surfaces over any field:

Theorem 1.2 (Segre). The number of lines on a smooth cubic surface over any field
must be 0, 1, 2, 3, 5, 7, 9, 15, or 27.

In light of Theorem 1.2, one can try to classify all which line counts actually occur
for smooth cubic surfaces over a given field. These line counts will be a subset of
{0, 1, 2, 3, 5, 7, 9, 15, 27}. For example, all line counts have been classified for smooth
cubic surfaces over the following fields.

• Smooth cubic surfaces over C can only have 27 lines [Cay49].

• Smooth cubic surfaces over R can only have 3, 7, 15, or 27 lines, and each of
these counts occurs [Sch58].

• Smooth cubic surfaces over Q can have 0, 1, 2, 3, 5, 7, 9, 15, or 27 lines, and
each of these counts occurs [Seg49].

• Smooth cubic surfaces over F2 and F3 can only have 0, 1, 2, 3, 5, 9, or 15 lines,
and each of these counts occurs [Dic15,LT20].
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• Smooth cubic surfaces over F5 can only have 0, 1, 2, 3, 5, 7, 9, or 15 lines, and
each of these counts occurs [LT20].

• Smooth cubic surfaces over Fq can have 0, 1, 2, 3, 5, 7, 9, 15, or 27 lines when
q > 5 is odd or q = 2d with d > 1, and each of these counts occurs [LT20].

We clarify these results by providing, for each n ∈ {0, 1, 2, 3, 5, 7, 9, 15, 27}, a sufficient
criterion for the occurrence of the line count n over any given field k (assuming |k| ≥ 23).
These criteria depend only on the Galois theory of k, so our main theorem can be
summarized by saying that arithmetic governs the enumerative geometry of lines on
cubic surfaces.

Theorem 1.3. Let k be a field with |k| ≥ 23. There is a smooth cubic surface over k
whose 27 lines are all defined over k. Moreover, there is a smooth cubic surface over k
containing n lines defined over k if k admits a separable field extension of the degrees
listed in Table 1.

Table 1. Line counts and degrees of extensions

n degree(s)

15 2

9 3

7 2

5 4

n degree(s)

3 2

2 5

1 2 and 4

0 3 or 6

Remark 1.4. Even more can be said about cubic surfaces with 3 lines. Such triples
of lines are either skew or coplanar and pairwise intersecting. There is a smooth cubic
surface over k with 3 skew lines if k admits separable extensions of degrees 2 and 3,
and there is a smooth cubic surface over k with 3 coplanar lines if k admits a separable
extension of degree 2.

Remark 1.5. Theorem 1.3 is only true if |k| > 5, as the fields F2, F3, and F5 admit
separable field extensions of arbitrary degree but do not admit all possible line counts for
smooth cubic surfaces. While Fq does not contradict Theorem 1.3 unless q = 2, 3, 5, our
methods do not account for this. We prove Theorem 1.3 by blowing up Galois-invariant
sets of points in the plane, and the cardinality assumption allows us to ensure that these
sets of points can be arranged in general position.

Remark 1.6. In an earlier version of this article, we claimed that the sufficient criteria
in Theorem 1.3 are also necessary. However, this claim was based on a mistake that
was caught by Sam Streeter. We will point out this mistake later in the article. In
forthcoming joint work with Kaya, Streeter, and Uppal [KMSU25], we give necessary
criteria for line counts on cubic surfaces (and other del Pezzo surfaces) in terms of the
arithmetic of the base field.
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1.1. Application: classifying line counts. As an application of Theorem 1.3, we
classify all possible line counts for smooth cubic surfaces over finitely generated fields
and finite transcendental extensions of arbitrary fields.

Corollary 1.7. Let k be a finitely generated field (with |k| ≥ 23) or a finite transcen-
dental extension of an arbitrary field. There is a smooth cubic surface over k containing
n lines defined over k for each n ∈ {0, 1, 2, 3, 5, 7, 9, 15, 27}.

Loughran and Trepalin’s classification of line counts over finite fields [LT20] also follows
from Theorem 1.3 (provided that the finite field contains at least 23 elements).

In [KMSU25], we give sufficient and necessary criteria for each line count, which can then
be applied to characterize all line counts over a given field. For example, it holds that a
smooth cubic surface over a real closed field must have 3, 7, 15, or 27 lines, generalizing
Schläfli’s classical count of lines on real cubic surfaces. One can also show that any
smooth cubic surface over the field of complex constructible numbers has 0, 2, 5, 9, or
27 lines, as this field is quadratically closed.

1.2. Remarks on the inverse Galois problem for cubic surfaces. B. Segre’s proof
of Theorem 1.2 is geometric. A modern approach to this theorem comes from the inverse
Galois problem for cubic surfaces. An integer n can be a line count for some smooth
cubic surface over some field only if there is a subgroup conjugacy class of the Weyl group
W (E6) whose action on the Schläfli graph has n fixed points. There are 25 conjugacy
classes to consider, and each of the counts given in Theorem 1.2 occurs for at least
one of these conjugacy classes. We include Loughran’s Magma implementation of this
computation in Appendix A. See also [BFL19, Table 7.1] for a list of the conjugacy
classes and their corresponding line counts.

Because we can deduce all occuring line counts over a given field k by solving the inverse
Galois problem for cubic surfaces over k, this inverse Galois problem is stronger than
just classifying all line counts over k. The inverse Galois problem for cubic surfaces was
solved over Q by Elsenhans and Jahnel [EJ15] (which thus gives an alternate proof of
Theorem 1.1) and over finite fields by Loughran and Trepalin [LT20] (see also [BFL19]).

Loughran and Trepalin show that fewer conjugacy classes occur for cubic surfaces over
F2 than over F3 [LT20, Theorem 1.1], even though the sets of line counts over these two
fields agree. In particular, the inverse Galois problem is strictly stronger than classifying
line counts. However, we can actually solve the inverse Galois problem for cubic surfaces
over some fields by obstructing certain line counts. The only line counts coming from
more than one conjugacy class are 0, 1, and 3, so if the only possible line counts over k
are a subset of {2, 5, 7, 9, 15, 27}, then one can solve the inverse Galois problem for cubic
surfaces over k by characterizing line counts over k.

1.3. Open question: counting lines on a given cubic surface. In a slightly differ-
ent direction, one can ask about the number of rational lines on a given cubic surface.
Ideally, we would like to be able to determine this number directly from the defining
polynomial of the given cubic surface.
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In joint work with Minahan and Zhang [MMZ21, Theorem 1.1], we proved that the
number of real lines on a smooth cubic surface X over R can be determined from the
defining polynomial of X and the defining equations of 3 skew real lines on X. It seems
reasonable that one could generalize this result to hold over other subcomplex fields.

The reason behind requiring the data of 3 skew lines is Galois-theoretic: the Galois
group of solving for the 27 lines on a cubic surface is not solvable [Jor57], so there is no
equation in radicals for the defining equations of these 27 lines. In contrast, the Galois
group of solving for the 27 lines on a cubic surface with 3 skew lines is solvable [Har79],
so there is a formula in radicals for the 27 lines in terms of the cubic surface and the
given 3 skew lines. Even without the data of 3 skew lines, there is an algebraic function
solving for the 27 lines on X in terms of its defining polynomial, so one could hope that
the count of rational lines on X can also be read from its defining polynomial.

Question 1.8. Let k be a field. Given a homogeneous polynomial F ∈ k[x0, . . . , x3]
of degree 3 whose associated cubic surface V(F ) ⊂ P3 is smooth, can the number of
k-rational lines on V(F ) be determined from the coefficients of F?

1.4. Methods and related work. Studying rational lines on cubic surfaces via blow
ups is a classical technique. See [LT20,BFL19] and the references therein for some recent
applications of this approach. When blowing up collections of closed points to get smooth
cubic surfaces, one technical requirement is that the points lie in general position. One
can derive algebraic criteria for this by requiring the points to lie on the cuspidal cubic
V(y3 − x2z) ⊂ P2

k (see Section 4.1). We learned this trick from a private communication
from J.-P. Serre, but the same idea appears in [PSS20].

Building on an earlier version of this article, El Manssour–El Maazouz–Kaya–Rose use
the method described in Section 4.1 to show that all line counts occur for smooth cubic
surfaces over p-adic fields [EMEMKR23].

While we focus on the existence of line counts for cubic surfaces over certain fields, one
can go further by investigating the distributions of these line counts or even classifying
all cubic surfaces with a given line count. These distributions are known over finite fields
due to the work of Das [Das20]. One can apply the methods of [PV04, Proposition 3.4] to
understand these distributions over Q. There has been extensive work on the subject of
classifying cubic surfaces and their lines over finite fields, especially on classifying cubic
surfaces with 27 lines over a finite field. See e.g. [Hir67a,Hir67b,BHK18,BK19].

1.5. Outline and conventions. We begin with an overview of some useful classical
results in Section 2. We then give B. Segre’s original geometric proof of Theorem 1.2
(with some details added and a minor error corrected) in Section 3. We prove Theo-
rem 1.3 in Section 4. Finally, we apply Theorem 1.3 in Section 5 to prove Corollary 1.7.
In Appendix A, we give Loughran’s code that gives a modern proof of Theorem 1.2.

Throughout this article, we will only consider smooth cubic surfaces. When working
over a field k, we will use the term rational lines to refer to lines defined over k (see
Definition 2.1). Whenever we write Y ⊆ X or Y ⊂ X for schemes X, Y , we mean that
Y is a closed subscheme of X.
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2. Preliminaries

We state a few classical results that we will use throughout this article.

Definition 2.1. Let K/k be a field extension. We say that a closed subscheme X ⊆ Pn
K

is defined over k or has field of definition k if the following equivalent conditions are
satisfied (see e.g. [Dol16, Proposition 1.2]).

(a) The defining ideal of X is generated by homogeneous polynomials in k[x0, . . . , xn].

(b) There exists a closed subscheme Y ⊆ Pn
k such that X = Y ×Spec k SpecK.

Any closed subscheme of projective space has a minimal field of definition by [DG67, IV2,
Corollaire (4.8.11)]. If a scheme X has field of definition k, we may also say that X is
k-rational. Definition 2.1 (b) immediately implies that field of definition is preserved
under base change.

Proposition 2.2. Let k ⊆ K ⊆ K ′ be a tower of fields. Let X ⊆ Pn
K be a closed

subscheme. If X is defined over k, then the base change XK′ = X ×SpecK SpecK ′ is
defined over k.

Proof. By assumption, there exists a closed subscheme Y ⊆ Pn
k such that X = Y ×Spec k

SpecK. Thus

XK′ = (Y ×Spec k SpecK)×SpecK SpecK ′

= Y ×Spec k SpecK
′,

as desired. □

Since closed immersions are stable under base change [Sta18, Lemma 01JY], Proposi-
tion 2.2 states that k-rational subschemes get sent to k-rational subschemes under base
change. The converse is also true.

Proposition 2.3. Let k ⊆ K ⊆ K ′ be a tower of fields. Let X, Y ⊆ Pn
K. Suppose that

YK′ ⊆ XK′ and that XK′ , YK′ are both defined over k. Then Y ⊆ X, and X, Y are both
defined over k.

https://stacks.math.columbia.edu/tag/01JY
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Proof of Proposition 2.3. Field extensions are fpqc and closed immersions satisfy fpqc
descent [DG67, IV2, Proposition (2.7.1) (xii)], so the assumption that YK′ ⊆ XK′ implies
that Y ⊆ X.

We now show that X is defined over k. The proof that Y is defined over k follows the
same argument. Let I and J be the defining ideals of X and XK′ , respectively, so that
I = J ∩ K[x0, . . . , xn]. Under Definition 2.1 (a), the assumption that XK′ is defined
over k means that there are homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn] such
that J = (f1, . . . , fm) · K ′[x0, . . . , xm]. Since k[x0, . . . , xn] ⊆ K[x0, . . . , xn], it follows
that J ∩K[x0, . . . , xn] is again generated by f1, . . . , fm. In particular, I is generated by
homogeneous polynomials in k[x0, . . . , xn], so X is defined over k. □

For any field extension K/k, a cubic surface over k is smooth if and only if its base change
to K is smooth (see e.g. [DG67, IV4, Proposition (17.3.3) (iii) and Corollaire (17.7.3)
(ii)]). Together with Propositions 2.2 and 2.3, this means that we can enumerate k-
rational lines on X by base changing to a field K over which all 27 lines on X are
defined and studying the k-rationality of lines on XK . Since smooth cubic surfaces are
separably split [Coo88], all lines on a smooth cubic surface over a field k are defined over
the separable closure ks (within any chosen algebraic closure of k).

We have thus reduced the study of rational lines on X to the study of k-rational lines
on Xks . We will study the field of definition of lines on cubic surfaces by acting on the
relevant varieties by the absolute Galois group. This was done classically for lines on
cubic surfaces over R, as well as by Pannekoek [Pan09] for studying Galois orbits of lines
on cubic surfaces over number fields.

Proposition 2.4. Let k be a field, and fix a separable closure ks of k. A geometrically
reduced closed subscheme X ⊆ Pn

ks is defined over k if and only if σ · X = X for all
σ ∈ Gal(ks/k).

Proof. The group Gal(ks/k) acts on the defining ideal I ⊆ ks[x0, . . . , xn] of X by acting
on the coefficients of each f ∈ I. If X is defined over k, then the coefficients of any
generating set of I are fixed under Gal(ks/k)-action and hence so is X.

Now suppose X is fixed under Gal(ks/k)-action. By Hilbert’s Basis Theorem, X is
defined by a finite set {f1, . . . , fr} of polynomials over some finite extension k′ ⊆ ks of
k. Given f ∈ I and σ ∈ Gal(k′/k), denote the image of f under σ-action by fσ. Since
σ ·X = X, we have that fσ(p) = 0 for all p ∈ X. In particular, fσ ∈ I for all f ∈ I. The
desired result follows from [HRC21, Lemma 1 (b)]. We describe the relevant ideas here.
Fix a k-basis {e1, . . . , em} of k′, and let Trk′/k : k′[x0, . . . , xn] → k[x0, . . . , xn] be given by
taking the Galois trace of each coefficient of a given polynomial. Then {Trk′/k(eifj)}i,j
generates the ideal I. Moreover, since Trk′/k(eifj)

σ = Trk′/k(eifj) for all σ ∈ Gal(k′/k),
it follows that Trk′/k(eifj) ∈ k[x0, . . . , xn]. Thus I is generated by polynomials over k,
as desired. □
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A cubic surface X defined over k is fixed by Gal(ks/k)-action, so Galois action preserves
the set of 27 lines on Xks . Moreover, Galois action preserves the incidence relations of
the 27 lines:

Proposition 2.5. Let k be a field with ks a fixed separable closure, X be a smooth cubic
surface defined over k, and σ ∈ Gal(ks/k). Two lines L and L′ in Xks intersect if and
only if σ · L and σ · L′ intersect.

Proof. The σ-action is defined pointwise. In particular, if L and L′ intersect in the point
p, then σ ·L and σ ·L′ intersect in the point σ · p. Conversely, if σ ·L and σ ·L′ intersect
in the point q, then L and L′ intersect in the point σ−1 · q. □

Proposition 2.6. Let k be a field with fixed separable closure ks, and let X be a smooth
cubic surface defined over k. If L1, L2, L3 ⊆ Xks are three coplanar lines, and if L1 and
L2 are defined over k, then L3 is also defined over k.

Proof. Since L1 and L2 are defined over k, the plane H ⊂ P3
k that contains them is also

defined over k. By Bézout’s theorem (and the fact that all lines on X are defined over
ks [Coo88]), we have Hks ∩ Xks = L1 ∪ L2 ∪ L3. The varieties L1, L2, H, and X are
each fixed by all Gal(ks/k)-actions since they are defined over k. We now act on the
configuration Hks ∩Xks by each σ ∈ Gal(ks/k). Since H and X are defined over k, we
have σ ·(Hks ∩Xks) = Hks ∩Xks . That is, L1∪L2∪L3 = (σ ·L1)∪(σ ·L2)∪(σ ·L3). Since
L1 and L2 are defined over k, we have σ · L1 = L1 and σ · L2 = L2, so L1 ∪ L2 ∪ L3 =
L1 ∪L2 ∪ (σ ·L3). It follows that L3 = σ ·L3 for all σ ∈ Gal(ks/k), so L3 is defined over
k. □

Corollary 2.7. If a smooth cubic surface X over a field k contains two rational lines
L1, L2 that intersect each other, then X contains a third rational line L3 that intersects
L1 and L2.

Proof. Let H be the plane containing L1 and L2. By Bézout’s theorem and [Coo88],
Xks ∩ Hks consists of (the base changes of) L1, L2, and a third line L3. Since L1 and
L2 are defined over k, Proposition 2.6 implies that L3 is also defined over k. Thus each
of these three lines on Xks are the base change of a k-rational line on X, and their
intersection data are preserved by Proposition 2.5. □

It is a classical result that every smooth cubic surface is the blow-up of P2 at 6 general
points — provided that one works over an algebraically closed field. In general, a smooth
cubic surface need not be birational to P2. For example, Schläfli proved that there are
smooth cubic surfaces over R whose R-points are homeomorphic to RP2⊔S2, where S2 is
a 2-sphere (for a modern treatment, see e.g. [Kol97, Section 5]). So while a smooth cubic
surface X over an arbitrary field k need not be rational, X is geometrically rational:
we can view Xk as the blow-up of P2

k
at 6 points. In fact, a result of Coombes [Coo88]

implies that every cubic surface is separably rational.

Lemma 2.8. Let k be a field, and let ks be the separable closure of k in some algebraic
closure k. If X is a smooth cubic surface over k, then Xks is the blow-up of P2

ks at 6
points.
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Proof. The proof follows a classical argument. We assume that k = ks (to simplify
notation), so that all 27 lines on X are k-rational [Coo88]. Since X contains at least
four rational lines, Bézout’s theorem implies that X contains two skew rational lines
(otherwise all four lines would be coplanar, contradicting the fact that X is cubic). We
can also show that each line on X meets 5 pairs of intersecting lines on X, with each
pair of lines disjoint from the others [Sha13, Chapter IV.2.5, p. 256].

Let L ⊂ X be a line, and let {Li, L
′
i}5i=1 be the set of pairs of lines meeting L (with

Li∩L′
i ̸= ∅ and (Li∪L′

i)∩(Lj∪L′
j) = ∅ for i ̸= j). If Λ ⊂ X is a line that does not meet

L, then Λ meets at most one of Li, L
′
i for each i (otherwise L and Λ would be coplanar

and hence not disjoint). In fact, Λ meets precisely one of Li, L
′
i for each i. To see this,

let Hi be the plane such that X ∩Hi = L∪Li∪L′
i. Since Λ ⊂ X, the intersection Hi∩Λ

consists of a single point that must lie on X. Thus Hi∩Λ ⊂ X ∩Hi = L∪Li∪L′
i. Since

L ∩ Λ = ∅ by assumption, we are done and can conclude that there are exactly 5 lines
in X meeting any skew pair of lines.

Given two skew lines L1, L2 ⊂ X, we construct mutually inverse rational maps ϕ : X 99K
L1 × L2 and ψ : L1 × L2 99K X as follows. For each x ∈ X\(L1 ∪ L2), let Lx ⊂ P3 be
the unique line through x and meeting L1 and L2. Define ϕ(x) = (L1∩Lx, L2∩Lx). For
each (ℓ1, ℓ2) ∈ L1 × L2, let ℓ1ℓ2 be the line through ℓ1 and ℓ2. If ℓ1ℓ2 is not contained
in X, then Bézout’s theorem implies that X ∩ ℓ1ℓ2 consists of three distinct points:
L1 ∩ ℓ1ℓ2, L2 ∩ ℓ1ℓ2, and a third point, which we denote ψ(ℓ1, ℓ2). Thus X is birational
to L1 × L2

∼= P1
k × P1

k.

We next extend ϕ : X 99K P1
k × P1

k to a morphism. If x ∈ X\Li, let Hi be the
unique plane in P3

k containing Li ∪ x for i = 1, 2. If x ∈ Li, let Hi = TxX. Setting
ϕ(x) = (H2 ∩ L1, H1 ∩ L2), one can check that ϕ : X → P1

k × P1
k is now a well-defined

morphism. The inverse of ϕ is not well-defined precisely where ψ is not well-defined,
namely whenever ℓ1ℓ2 ⊂ X. These are lines in X that meet the two skew lines L1 and
L2, and there are 5 such lines. One then checks that ϕ : X → P1

k × P1
k is a blow-up at

these 5 points. Since P1
k × P1

k is the blow-up of P2
k at 1 point, it follows that X is the

blow-up of P2
k at 6 points. □

Remark 2.9. As mentioned in the introduction, we claimed in a previous version of
this article that the sufficient criteria listed in Theorem 1.3 are also necessary. This was
based on an incorrect application of Lemma 2.8 — we claimed that if Xks is k-rational,
then the blowdown locus of 6 points in P2

ks must also be k-rational. However, as Sam
Streeter pointed out to us, this is not true. Given a closed embedding Z ⊆ Y , the
blowup BlZ(Y ) can be k-rational even if Z is not k-rational. For example, there are real
cubic surfaces that are not birational to RP2 (Schläfli’s fifth type), whereas these cubic
surfaces are geometrically rational (as are all smooth cubic surfaces).

3. The list of possible line counts

We now give B. Segre’s proof of Theorem 1.2. The general idea is to pass to the separable
closure, work geometrically, and keep track of the field of definition of each line. As
mentioned in Section 1.2, Theorem 1.2 can be proved by a computation on the Weyl group
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W (E6) (see Appendix A for a Magma implementation of this computation, provided
to us by Loughran). However, we find Segre’s geometric proof interesting and worth
expositing. We will add various details omitted from Segre’s original account, streamline
some of the arguments, and correct Segre’s unnecessary char k ̸= 2 assumption.

The proof utilizes a few geometric facts, which we list for the reader’s convenience. These
facts are classical, although we keep track of the field of definition of the lines involved
when necessary. We will omit any proofs that do not require us to keep track of fields
of definition. The first fact is that every line L on a smooth cubic surface meets exactly
one line in each triple of coplanar lines (to which L does not belong).

Lemma 3.1. Let X be a smooth cubic surface. Given three pairwise-intersecting lines
L1, L2, L3 on X, any other line on X meets exactly one of L1, L2, L3.

In Lemma 3.7, we will show that if a smooth cubic surface X contains four skew k-
rational lines, then X contains either 15 or 27 k-rational lines. Two key ingredients
are: each triple of skew lines on X meets a unique triple of skew lines on X, and each
quadruple of skew lines on X meets a unique pair of skew lines on X.

Proposition 3.2. Let X be a smooth cubic surface. Given three skew lines L1, L2, L3 ⊂
X, there is a unique triple M1,M2,M3 ⊂ X of skew lines that each meet Li.

Proposition 3.3. Let X be a smooth cubic surface. Given four skew lines L1, . . . , L4 ⊂
X, there is a unique pair L,L′ ⊂ X of skew lines meeting each Li.

We will also need the facts that each pair of skew lines on X belongs to a unique double
six that splits the pair, and that the intersection graph of the 15 lines in the complement
of any double six is given by Figure 3i.

Definition 3.4. A double six is a collection {Li, L
′
i}6i=1 of twelve lines such that L1, . . . , L6

are skew, L′
1, . . . , L

′
6 are skew, Li and L′

i are skew, and Li and L′
j are not skew for i ̸= j.

The two subsets {Li} and {L′
i} are called sextuples.

Proposition 3.5. Let X be a smooth cubic surface. Given two skew lines L,L′ ⊂ X,
there is a unique double six of lines on X with L and L′ belonging to different sextuples.

Lemma 3.6. Let X be a smooth cubic surface. The intersection graph of the lines in
the complement of any double six on X is the graph given in Figure 3i.

Proof. The incidence pattern of the lines in the complement of a double six, together
with the tritangent planes to which they belong, form the Cremona–Richmond configu-
ration CR [Sch58]. Since the Cremona–Richmond configuration is self-dual, we can take
the vertices of CR to represent the 15 lines on X and the lines of CR to represent the tri-
tangent planes to which these lines on X belong. Each such tritangent plane corresponds
to a 3-cycle in G since coplanar lines on X are pairwise-intersecting. It follows that we
can obtain G by “projectivizing” CR: we turn each line on CR into a 3-cycle by joining
the vertices on each end with a new edge. This is the graph given in Figure 3i. □

We can now show that if a smooth cubic surface X contains four skew k-rational lines,
then X contains either 15 or 27 k-rational lines.
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Lemma 3.7. Let X be a smooth cubic surface over a field k with four skew k-rational
lines L1, . . . , L4 ⊂ X. Let L,L′ ⊂ X be the (not necessarily k-rational) lines meeting
each Li. Let D be the double six of X such that L and L′ belong to different sextuples.
The 15 lines of X not belonging to D are all defined over k, and the lines belonging to
D are either all defined over k or all not defined over k.

Proof. We will first show that L,L′ are either both k-rational or both not k-rational.
Three skew lines in P3

k determine a unique quadric surface. Let Q be the quadric de-
termined by L1, L2, L3. Let M1,M2,M3 be the triple of skew lines meeting L1, L2, L3

as given by Proposition 3.2. Bézout’s theorem and the fact that each Mi meets each
L1, L2, L3 implies that M1,M2,M3 are also contained in Q. Since L and L′ meet
L1, L2, L3, we deduce that L,L′ ∈ {M1,M2,M3}. Because the set {L1, L2, L3} is Galois-
fixed, the quadric Q and both of its rulings are all defined over k. To solve for L,L′, we
first compute the intersection Q ∩ L4 = {p1, p2}. We then take the ruling R of Q that
does not contain L1, L2, L3 and find the lines R1, R2 ∈ R that pass through p1, p2, re-
spectively. Algebraically, this corresponds to solving a quadratic equation over k. Since
the roots of a quadratic equation over k have the same field of definition, L and L′ are
either both k-rational or both not k-rational.

Fix a separable closure ks of k, and let Gk = Gal(ks/k). Let Λ be such that {L,L′,Λ} =
{M1,M2,M3}. While L,L′ need not be k-rational, the line Λ is k-rational. Indeed, L4

and Q are defined over k, so the intersection L4 ∩ Q is fixed under Gk-action. Both
rulings of Q are also defined over k, so the set of lines through L4 ∩Q in either of these
rulings is fixed under Gk. Thus {L,L′} is Gk-fixed. Since X is also defined over k, the
intersection X ∩Q = {L1, L2, L3, L, L

′,Λ} is Gk-fixed. Since L1, L2, L3 are all k-rational
and {L,L′} is Gk-fixed, it follows that Λ is also Gk-fixed and is hence k-rational by
Proposition 2.4.

Since L and L′ belong to different sextuples in D, any line in D must be skew to exactly
one of L and L′. In particular, the lines L1, . . . , L4 do not belong to D. Since Λ is in
a different ruling of Q than L1, L2, L3, the rational lines Λ and Li intersect and hence
determine a new k-rational line Ni ⊂ X for 1 ≤ i ≤ 3. Note that each Ni cannot meet
L or L′, or else we would have two distinct triples of coplanar lines that both contain Li

and Ni. In particular, Ni ̸∈ D for each i.

The line L4 does not meet L1, L2, L3, or Λ, so Lemma 3.1 implies that L4 meets each Ni

for 1 ≤ i ≤ 3. We thus obtain new k-rational lines P1, P2, P3, with Pi meeting L4 and
Ni. As with each Ni, the fact that L4 meets L and L′ implies that Pi cannot meet L or
L′, so Pi ̸∈ D. We have thus found 11 k-rational lines in the complement of D.

We now fill out the rest of the intersection graph of the complement of D. Each Pi must
be adjacent to the 3-cycle {Λ, Lj, Nj} for i ̸= j. In order to avoid creating two distinct
3-cycles that share an edge, Pi cannot intersect Λ or Nj. We thus get a k-rational line
Ai,j meeting Pi and Lj. Since Ai,j meets Lj and Lj meets L,L′, it follows as before that
Ai,j ̸∈ D. Moreover, working within the graph in Figure 3i shows that Ai,j = Aj,i, so we
have found 14 k-rational lines in the complement of D. The final line in the complement
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of D is residual to Nℓ and Ai,j (where {i, j, ℓ} = {1, 2, 3}), so the final line in D is
k-rational as well.

Let S and S ′ be the sextuples in D to which L and L′ respectively belong. Since L and
L′ are disjoint, L intersects each line in S ′ − {L′}. Let Λ ∈ S ′ − {L′} be such a line.
There is a third line R ⊂ X that intersects both L and Λ. Since R intersects L, we
have R ̸∈ S. Since R intersects Λ ∈ S ′, we have R ̸∈ S ′. Thus R is not contained in
the double six D, so R is k-rational by the previous paragraph. If L is k-rational, then
Corollary 2.7 implies that Λ is also k-rational. Similarly, if L is not k-rational, then we
deduce that Λ cannot be k-rational by the contraposition of Corollary 2.7. Repeating
this argument for all lines in S ′ − {L′}, as well as the symmetric argument for all lines
in S − {L}, we find that X contains exactly 15 k-rational if L,L′ are not k-rational or
27 k-rational lines if L,L′ are k-rational. □

The final fact we will use is that if a smooth cubic surface X contains two triples of
coplanar k-rational lines, then X contains a Steiner system of k-rational lines.

Definition 3.8. A set {Lj
i}3i,j=1 of nine lines on a smooth cubic surface is called a Steiner

system if L1
i , L

2
i , L

3
i are coplanar for all i and Lj

1, L
j
2, L

j
3 are coplanar for all j.

Lemma 3.9. Let X be a smooth cubic surface over a field k. Let L1
1, L

1
2, L

1
3 and L2

1, L
2
2, L

2
3

be two distinct triples of k-rational coplanar lines on X. Then there exist k-rational lines
L3
1, L

3
2, L

3
3 ⊂ X such that {Lj

i}3i,j=1 form a Steiner system.

Proof. Lines onX intersect if and only if they are coplanar. Thus Lemma 3.1 implies that
for each 1 ≤ i ≤ 3, the line L1

i meets L2
j for precisely one of 1 ≤ j ≤ 3. Symmetrically,

the line L2
i meets L1

j for precisely one of 1 ≤ j ≤ 3. Thus the lines L1
i and L2

j can be
paired off into three couples of intersecting lines. Relabel the lines L2

j so that L1
i ∩L2

i ̸= ∅
for each i. Since all of the lines at hand are k-rational, each of these pairs gives rise to
another k-rational line by Corollary 2.7. Denote the new k-rational line coming from L1

i

and L2
i by L3

i . Then {Lj
i}3i,j=1 is the desired Steiner system. □

We are almost ready to prove Theorem 1.2. We will phrase our argument in terms of
the intersection graph G of X. The vertices of G correspond to k-rational lines on X,
and two vertices of G are adjacent if the corresponding lines on X intersect. We will
reinterpret some of the above geometric facts in terms of the intersection graph, after
which we will prove Theorem 1.2.

Lemma 3.10. Let X be a smooth cubic surface over a field k, and let G be its intersection
graph. Then:

(i) Every edge of G belongs to a 3-cycle.

(ii) No two 3-cycles in G share an edge.

(iii) If G contains a 3-cycle, then G is connected.

(iv) If G contains two 3-cycles that do not share any vertices, then G contains a Steiner
system.
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(v) If G contains four non-adjacent vertices, then G is either the graph given in Fig-
ure 3i or the complement of the Schläfli graph.

Proof. An edge in G corresponds to two intersecting k-rational lines, and a 3-cycle in G
corresponds to three pairwise-intersecting (equivalently, coplanar) k-rational lines. Thus
Corollary 2.7 implies (i).

If G were to contain two 3-cycles that shared an edge, then the four vertices in this
configuration would correspond to four coplanar lines on X. Letting H be the plane
containing these four lines, we would have four lines in X ∩ H. But Bézout’s theorem
implies that X ∩ H contains at most degX · degH = 3 lines, so we deduce (ii) by
contradiction.

Lemma 3.1 implies that if G contains a 3-cycle, then every vertex in G is adjacent to one
of the vertices in the 3-cycle. This in turn implies that G is connected, giving us (iii).

Item (iv) is just a restatement of Lemma 3.9. Item (v) follows from Lemmas 3.6 and 3.7.
Indeed, four non-adjacent vertices in G correspond to four skew lines on X. The k-
rational lines on X then either belong to the complement of a double six (whose inter-
section graph is given in Figure 3i), or all 27 lines on X are k-rational (whose intersection
graph is the complement of the Schläfli graph [Sch58,Tod32]). □

Proof of Theorem 1.2. The method of proof is to list all graphs satisfying the criteria
given in Lemma 3.10. Let G be the intersection graph of a smooth cubic surface over
a field k. There are no obstructions to G being the empty graph (Figure 3a), a single
vertex (Figure 3b), or two disjoint vertices (Figure 3c). If G contains an edge between
two vertices, then G contains a 3-cycle by Lemma 3.10 (i). There are no obstructions to
G consisting of three vertices with no edges (Figure 3d) or a 3-cycle (Figure 3e).

If G contains at least four vertices, then every vertex of G must belong to a 3-cycle.
Indeed, if G contains an edge and therefore a 3-cycle by Lemma 3.10 (i), then G is
connected by Lemma 3.10 (iii). It follows that every vertex of G has an incident edge
and therefore belongs to a 3-cycle. If G contains four disjoint vertices, then G contains
an edge by Lemma 3.10 (v) and hence every vertex of G belongs to a 3-cycle.

It follows that if G contains at least four vertices, then we must obtain G by taking
a 3-cycle C, adjoining additional 3-cycles to C (with each additional 3-cycle meeting
C at precisely one of its vertices), and then adding any edges necessary to satisfy the
constraints listed in Lemma 3.10. One consequence is that if G contains at least four
vertices, then G must contain an odd number of vertices, since we begin with a 3-cycle
but only add two new vertices for each additional 3-cycle.

There is only one way to construct a graph with five vertices in this manner (Figure 3f).
To obtain a graph with seven vertices, we take two adjoined 3-cycles and adjoin a third
3-cycle. If these three 3-cycles do not share a common vertex, then we have a chain of
3-cycles (see Figure 1). Each vertex on one end of this chain must be adjacent to the
3-cycle on the other end, so we need to add edges accordingly (one example illustrated
in cyan). We must add more edges to G until every edge belongs to a 3-cycle, but this
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Figure 1. Impermissible graph of seven lines

will then force G to contain two 3-cycles that share an edge (one example illustrated in
red). This contradicts Lemma 3.10 (ii), so we conclude that all three 3-cycles must be
joined at a common vertex (Figure 3g).

If G has nine vertices, then we attach three 3-cycles T1, T2, T3 to a fourth 3-cycle C. If
two of T1, T2, T3 are attached to C at the same vertex, then there are four non-adjacent
vertices in G (see Figure 2). We must therefore add edges until no set of four vertices
are mutually non-adjacent, but any choice of such edges will conflict with Lemma 3.10
(ii). We therefore conclude that each Ti must be adjoined to C at a different vertex of
C. We must then add edges until G satisfies Lemma 3.10. This process results in the
intersection graph of the Steiner system (Figure 3h).

To conclude, we will show that if G has more than nine vertices, then G contains four
non-adjacent vertices. If G has more than nine vertices, then G is obtained by attaching
at least four 3-cycles to a central 3-cycle. By the pigeonhole principle, G will contain one
of the graphs in Figure 2 as a subgraph. If no four vertices of G are non-adjacent, we
will need to add edges to G, but we have already seen that this will force G to conflict
with Lemma 3.10 (ii). We thus conclude that G contains four non-adjacent vertices, so
G has 15 or 27 vertices by Lemma 3.10 (v). □

(a) All Ti sharing a vertex (b) Two Ti sharing a vertex

Figure 2. Impermissible graphs of nine lines

3.1. Characteristic 2. While his proof works in any characteristic, B. Segre incor-
rectly states that Theorem 1.2 fails in characteristic 2. He then proceeds to describe
three smooth cubic surfaces over F2 that contain 35, 13, and 6 lines. These line counts
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contradict the classification of smooth cubic surfaces over F2 given by Dickson [Dic15].
In private communication, J.-P. Serre pointed out to us that Segre’s lines are defined
set-wise rather than algebraically. That is, Segre implicitly defines a line L to be con-
tained in a smooth cubic surface X if every rational point of L is contained in X. Since
P3
F2

contains 15 rational points and 35 rational lines, Segre calculates the lines in his
examples by checking which of these 15 points are contained in his cubic surfaces.

Over fields of cardinality at least 3, the set-theoretic and algebraic definitions of line
containment for cubic surfaces agree.

Proposition 3.11. Let k be a field of cardinality at least 3. Let X be a cubic surface
defined over k. Let L be a line defined over k. Then L is contained in X if and only if
every k-rational point of L is contained in X.

Proof. If L ⊂ X, then every point of L is contained in X. Thus all k-rational points of
L are contained in X. Conversely, suppose all k-rational points of L are contained in X.
Since L is defined over k, this line is isomorphic to P1

k. If |k| > 2, then L ∼= P1
k contains

|k|+1 > 3 points defined over k. Since degL ·degX = 3, Bézout’s theorem implies that
L must be contained in X. □

Proposition 3.11 fails over F2. Indeed, P1
F2

only contains three F2-rational points, so a
cubic surface X may intersect a line L in three F2-points without containing any points
of L not defined over F2. This accounts for the discrepancy between Segre’s claim and
Dickson’s theorem [Dic15] about lines on cubic surfaces over F2.

4. Sufficient criteria for line counts

In this section, we prove Theorem 1.3 by blowing up P2
k at appropriate sets of points.

The various line counts arise from the arithmetic configurations of the sets at which we
blow up. This technique is classical and appears extensively in the study of lines on real
cubic surfaces. As we will see in Section 4.1, most of the work goes into showing that
the relevant sets of points can be arranged in general position over k.

Setup 4.1. There is a well-known method for constructing the 27 lines on a smooth
cubic surface via blow-ups. If X is the smooth cubic surface obtained by blowing up P2

k

at the six geometric points p1, . . . , p6, then we get the following lines on X:

• Ei, the exceptional divisor above pi, for 1 ≤ i ≤ 6.

• Ci, the strict transform of the unique conic through {p1, . . . , p6} − {pi}, for 1 ≤
i ≤ 6.

• Lij, the strict transform of the unique line through pi and pj, for 1 ≤ i < j ≤ 6.

We also deduce that only pairs among these lines that intersect are Ei and Cj for i ̸= j,
En and Lij for n = i, j, Cn and Lij for n = i, j, and Lij and Lmn for {i, j}∩{m,n} = ∅.

Since all lines on X are defined over a separable closure ks of k [Coo88], we may take
p1, . . . , p6 to be ks-rational. We can now check whether X and any of its line are defined
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over k using Proposition 2.4. The surface X is defined over k if and only if the set
{p1, . . . , p6} is Gal(ks/k)-fixed. Moreover:

• Ei is k-rational if and only if pi is k-rational.

• Ci is k-rational if and only if the set {p1, . . . , p6} − {pi} is Gal(ks/k)-fixed.

• Lij is k-rational if and only if the set {pi, pj} is Gal(ks/k)-fixed.

Each possible line count (and configuration) for smooth cubic surfaces arises from par-
titioning {p1, . . . , p6} into Galois orbits.

(16) If p1, . . . , p6 are all k-rational, then all 27 lines on X are k-rational.

(14, 21) If p1, . . . , p4 are k-rational and {p5, p6} is a Galois orbit, then L56 and Ei, Cj, Lij

for 1 ≤ i, j ≤ 4 are the only k-rational lines on X. Thus X has 15 k-rational
lines.

(13, 31) If p1, p2, p3 are k-rational and {p4, p5, p6} is a Galois orbit, then Ei, Cj, Lij for
1 ≤ i, j ≤ 3 are the only k-rational lines on X. Thus X has 9 k-rational lines.

(12, 22) If p1, p2 are k-rational, {p3, p4} is a Galois orbit, and {p5, p6} is a Galois orbit,
then E1, E2, C1, C2, L12, L34, and L56 are the only k-rational lines on X. Thus X
has 7 k-rational lines.

(12, 41) If p1, p2 are k-rational and {p3, . . . , p6} is a Galois orbit, then E1, E2, C1, C2, and
L12 are the only k-rational lines on X. Thus X has 5 k-rational lines.

(11, 21, 31) If p1 is k-rational, {p2, p3} is a Galois orbit, and {p4, p5, p6} is a Galois orbit,
then E1, C1, and L23 are the only k-rational lines on X. Thus X contains 3 skew
k-rational lines.

(23) If {pi, pj} is a Galois orbit for (i, j) = (1, 2), (3, 4), and (5, 6), then L12, L34, and
L56 are the only k-rational lines on X. Thus X contains 3 k-rational lines that
are pairwise intersecting.

(11, 51) If p1 is k-rational and {p2, . . . , p6} is a Galois orbit, then E1 and C1 are the only
k-rational lines on X. Thus X contains 2 k-rational lines.

(21, 41) If {p1, p2} and {p3, . . . , p6} are each Galois orbits, then L12 is the only k-rational
line on X. Thus X contains 1 k-rational line.

(32) If {p1, p2, p3} and {p4, p5, p6} are each Galois orbits, then X has no k-rational
lines.

(61) If {p1, . . . , p6} is a Galois orbit, then X has no k-rational lines.

4.1. Blowing up on the cuspidal cubic. In order to obtain a smooth cubic surface
by blowing up P2

k at one of the sets described in Setup 4.1, we need to ensure that the
points at which we are blowing up lie in general position. (Over k, our collection of
points splits into six points. These six points are said to lie in general position if no
three are contained in a line and all six are not contained in a conic.)
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If we require our six points to lie on the cuspidal cubic C = V(y3 − x2z), the parame-
terization C = {[1 : t : t3]} gives us an algebraic method for checking whether the points
lie in general position. Three distinct points [1 : ti : t

3
i ] lie on the line V(ax+ by + cz) if

and only if each ti is a root of F (t) = a + bt + ct3. The sum of these roots is a scalar
multiple of the coefficient of the degree 2 term of F (t), so the points [1 : ti : t

3
i ] lie on

a shared line if and only if t1 + t2 + t3 = 0. Similarly, six distinct points [1 : ti : t
3
i ] lie

on the conic V(ax2 + bxy + cy2 + xz + eyz + fz2) if and only if each ti is a root of
G(t) = a+ bt+ ct2 + dt3 + et4 + ft6. The sum of these roots is a scalar multiple of the
coefficient of the degree 5 term of G(t), so [1 : ti : t

3
i ] lie on a shared conic if and only if

t1 + . . .+ t6 = 0.

In order to find six points on the cuspidal cubic that lie in general position in P2
k, it

therefore suffices to construct a degree 6 monic polynomial G(t) such that:

(i) G(t) has no repeated roots.

(ii) No three roots of G(t) sum to zero.

(iii) The degree 5 coefficient of G(t) is not zero.

In Section 4.2, we will prove Theorem 1.3 by constructing various degree 6 monic poly-
nomials that satisfy the above criteria.

4.2. Proof of Theorem 1.3. We are now ready to prove Theorem 1.3. We treat each
Galois partition of {p1, . . . , p6} (see Setup 4.1) in a separate lemma. We remark that the
cardinality assumptions on k in each of these lemmas need not be optimal — for example,
Lemma 4.4 requires |k| ≥ 13 in order to find 6 k-rational points in general position on
the cuspidal cubic. If one does not restrict to the cusp, then there are collections of 6
k-rational points in P2

k in general position. However, we will be content to restrict our
search to points on the cuspidal cubic. We also remark that the proofs in this section
are fairly computational. This is intentional — in case some reader wishes to construct
a smooth cubic surface over a given field with a desired line count, these proofs outline
how to find an explicit set of points at which to blow up.

Remark 4.2. When constructing a degree 6 polynomial with at least one rational root,
we will always avoid taking 0 to be one of our roots. In effect, this means that none of
our 6 points in the plane will lie on the cusp point of the cuspidal cubic. The reason for
this is to allow us to apply the Cayley–Bacharach theorem when constructing sets of 8
points in general position in [KMSU25].

Throughout this section, all irreducible polynomials that we work with are assumed to be
separable. We will make frequent use of the following lemma, which allows us to furnish
monic, separable, irreducible polynomials with a prescribed penultimate coefficient.

Lemma 4.3. Let k be a field. Pick a ∈ k. Assume that k admits a finite separable
extension of degree n ≥ 2. If char k = n = 2, we assume that a ̸= 0. Then there is
a monic, separable, irreducible polynomial f(t) ∈ k[t] of degree n whose degree n − 1
coefficient is a.
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Proof. When k is a finite field, this is a special case of the Hansen–Mullen conjecture,
which was proved by Wan [Wan97] and Ham–Mullen [HM98]. We may thus assume that
k is an infinite field, although we will not need this assumption in most cases. In general,
the assumption that k admits a finite separable extension of degree n implies that there
is a monic, separable, irreducible polynomial m(t) ∈ k[t] of degree n. The goal is to use
m(t) to find another monic, separable, irreducible polynomial f(t) with the prescribed
coefficient in degree n− 1.

To begin, assume that char k = 0 or that char k does not divide n.

(i) If the degree n − 1 coefficient of m(t) is c ̸= 0 and the prescribed coefficient is
a ̸= 0, then set f(t) := (a−1c)−n ·m(a−1ct). The separability and irreducibility of
f(t) follow from that of m(t), and the degree n− 1 coefficient of f(t) is (a−1c)−n ·
c(a−1c)n−1 = a, as desired.

(ii) If c = 0 and a ̸= 0, then set g(t) := m(t + 1) (which is again separable and
irreducible). By the binomial theorem, the degree n− 1 coefficient of g(t) is

(
n
1

)
=

n (or n mod char k in positive characteristic), which is non-zero since we have
assumed that char k = 0 or char k ∤ n. We can then set f(t) = (a−1n)−n · g(a−1nt)
as in (i).

(iii) If c ̸= 0 and a = 0, then set f(t) := m(t − c
n
). Since −c is the sum of the roots

of m(t), the sum of the roots of f(t) is −c+ n · c
n
= 0, which is the desired degree

n− 1 coefficient.

(iv) If a = c = 0, then we simply take f(t) := m(t).

Now suppose that char k = p and n = pq for some integer q > 0. In characteristic p,
an irreducible polynomial m(t) ∈ k[t] is separable if and only if it is not of the form
m(t) = h(tp) for some polynomial h(t) ∈ k[t]. Let m(t) ∈ k[t] be a monic, separable,
irreducible polynomial of degree n. Then there exists 1 ≤ d ≤ n with p ∤ d such that the
degree d term of m(t) is non-zero. Let c be the degree d coefficient of m(t).

(v) If d = n − 1 and the prescribed coefficient is a ̸= 0, then set f(t) := (a−1c)−n ·
m(a−1ct) as in (i).

(vi) If d = 1 and a ̸= 0, then the scaled reciprocal polynomial m∗(t) := m(0)−1tn ·m(t−1)
is again separable and irreducible with degree n − 1 coefficient m(0)−1c ̸= 0. We
then set f(t) := (a−1m(0)−1c)−n ·m∗(a−1m(0)−1ct).

(vii) If the degree 1 and n− 1 terms of m(t) are zero and a ̸= 0, then consider gx(t) :=
m(t+x). The degree 1 term of gx(t) is cx :=

∑n−2
i=2 imix

i−1, where mi is the degree
i coefficient of m(t). Since cx is a degree n − 2 polynomial in x, our assumption
that |k| = ∞ > n − 2 implies that there exists α ∈ k such that cα ̸= 0. It
follows that the scaled reciprocal polynomial g∗α(t) is a monic, separable, irreducible
polynomial with degree n − 1 coefficient m(α)−1cα ̸= 0, so we can set f(t) :=
(a−1m(α)−1cα)

−n · g∗α(a−1m(α)−1cαt).

(viii) If c ̸= 0 and a = 0, then let α be a root of m(t). It suffices to find β ∈ k(α) with
trace zero such that β is not contained in any proper subextension of k(α)/k. Once
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we have done so, it will follow that k(β) = k(α) is separable over k, and hence
the minimal polynomial of β will be a monic, separable, irreducible polynomial of
degree n. By picking β with trace zero, the trace of its minimal polynomial (i.e.
the degree n− 1 coefficient) will be zero as well.

The trace defines a k-linear map tr : k(α) → k, so ker(tr) is a k-vector space of
dimension n−1. Since k(α)/k is a separable extension, there are only finitely many
subextensions k ⊂ L ⊂ k(α). Moreover, since [k(α) : k] = [k(α) : L] · [L : k], each
subextension L is a vector subspace of k(α) of dimension at most n/2. It suffices
to choose β ∈ ker(tr) −

⋃
k⊂L⊂k(α) L. If n > 2, then a finite union of at most n/2-

dimensional subspaces cannot cover an (n− 1)-dimensional subspace. Paired with
the assumption that k is infinite, it follows that ker(tr)−

⋃
k⊂L⊂k(α) L is non-empty

if n > 2. The n = 2 case is already solved by case (iii) and our assumption that
a ̸= 0 if char k = n = 2.

(ix) If a = c = 0, then we take f(t) := m(t) as in case (iv). □

Lemma 4.4 (16). Let k be a field with |k| ≥ 16. Then there is a smooth cubic surface
over k with 27 k-rational lines.

Proof. It suffices to find 6 k-rational points on the cuspidal cubic C that are in general
position. If char k is 0 or at least 17, then G(t) =

∏6
i=1(t+i) satisfies the desired criteria.

Otherwise, write char k = p.

• If 5 ≤ p ≤ 13, then there exists α ∈ k − Fp, and G(t) = (t+ 1)(t+ 2)(t+ α)(t+
α + 1)(t+ α + 2)(t+ α + 3) satisfies the desired criteria.

• If p = 3, then there exist α, β ∈ k−F3 such that {1, α, β} are F3-linearly indepen-
dent. Indeed, if k is a finite extension of F3, then |k| ≥ 27 and hence dimF3 k ≥ 3.
If k is an infinite extension of F3, then take α ∈ k to be transcendental over F3

and set β = α2. In either case, G(t) = (t+1)(t+2)(t+α)(t+α+1)(t+β)(t+β+1)
satisfies the desired criteria.

• If p = 2, then there exist α, β, γ ∈ k − F2 such that {1, α, β, γ} are F2-linearly
independent. Indeed, if k is a finite extension of F2, then |k| ≥ 16 and hence
dimF2 k ≥ 4. If k is an infinite extension of F2, then take α to be transcendental
over F2 and set β = α2 and γ = α3. In either case, G(t) = t(t + 1)(t + α)(t +
β)(t+ γ)(t+ α + β + γ) satisfies the desired criteria. □

Lemma 4.5 (14, 21). Let k be a field with |k| ≥ 8. Assume that k admits a separable
degree 2 extension. Then there is a smooth cubic surface over k with 15 k-rational lines.

Proof. Let m(t) = t2 + at + b ∈ k[t] be a separable irreducible polynomial. It suffices
to pick four distinct elements r1, r2, r3, r4 ∈ k× such that

∑4
i=1 ri ̸= a and

∑
i ̸=j ri ̸= 0

for 1 ≤ j ≤ 4 (since the roots of m(t) are not defined over k and are thus not equal
to −ri − rj). Once we have done so, G(t) = m(t) ·

∏4
i=1(t − ri) will satisfy the desired

criteria. (The requirement that r1, . . . , r4 ̸= 0 is explained in Remark 4.2.)
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Pick distinct r1, r2 ∈ k×. We then need to choose r3 ∈ k× − {r1, r2} such that r3 ̸=
−r1 − r2, so we may freely pick r3 ∈ k× − {r1, r2,−r1 − r2}. Finally, we need to choose
r4 ∈ k× − {r1, r2, r3,−r1 − r2,−r1 − r3,−r2 − r3}. Since we have assumed |k| ≥ 8, such
an r4 exists, and we are done. □

Lemma 4.6 (13, 31). Let k be a field with |k| ≥ 7. Assume that k admits a separable
degree 3 extension. Then there is a smooth cubic surface over k with 9 k-rational lines.

Proof. By Lemma 4.3, there is a separable irreducible polynomialm(t) = t3+at2+bt+c ∈
k[t] with a ̸= 0. Since a ̸= 0, the three roots of m(t) do not sum to zero. Since m(t) is
irreducible of degree 3, no two roots of m(t) sum to an element of k (or else the third root
would belong to k and m(t) would not be irreducible). It thus suffices to find distinct
r1, r2, r3 ∈ k× such that r1 + r2 + r3 ̸= 0 and r1 + r2 + r3 ̸= a. (The requirement that
r1, r2, r3 ̸= 0 is explained in Remark 4.2.) Once we have done so, G(t) = m(t)·

∏3
i=1(t−ri)

will satisfy the desired criteria.

Pick distinct r1, r2 ∈ k×. We may then freely pick r3 ∈ k×−{r1, r2,−r1−r2, a−r1−r2}.
Since we have assumed |k| ≥ 7, such an r3 exists. □

Lemma 4.7 (12, 22). Let k be a field with |k| ≥ 5. Assume that k admits a separable
degree 2 extension. Then there is a smooth cubic surface over k with 7 k-rational lines.

Proof. Let m(t) = t2 + at + b ∈ k[t] be a separable irreducible polynomial with a ̸= 0
(which exists by Lemma 4.3). First suppose char k ̸= 2, so that a ̸= −a. Then n(t) :=
m(−t) = t2−at+ b also does not have any k-rational roots, so n(t) is also separable and
irreducible over k. Pick r1 ∈ k×−{±a} and r2 ∈ k×−{±a,±r1}, which is possible since
|k| ≥ 5. Then G(t) = (t − r1)(t − r2) ·m(t) · n(t) satisfies the desired criteria. Indeed,
the degree 5 term is a − a − r1 − r2 = −(r1 + r2), which is non-zero by our choice of
r2. The sum of one (respectively, two) rational roots of G(t) with two (respectively, one)
non-rational roots of G(t) cannot be zero (since r1, r2 ̸= ±a). Finally, all four roots of
m(t) and n(t) sum to zero, so no three of these roots can sum to zero (or else the fourth
root would be 0 ∈ k, a contradiction).

If char k = 2, then pick a ∈ k − F2 (which we may do since |k| ≥ 5). By Lemma 4.3,
there exists b such that m(t) = t2 + at + b is separable and irreducible. Take n(t) :=
m(t + 1) = t2 + at + a + b + 1 as our second irreducible polynomial, and note that
m(t) ̸= n(t) since a ̸= 1. Now pick c ∈ k× − {1, a} (which we may do since |k| ≥ 5).
Then G(t) = (t + 1)(t + c) ·m(t) · n(t) satisfies the desired criteria. Indeed, the degree
5 term is 1 + c ̸= 0, sums of three roots involving one or two rational roots cannot be
zero, and the sum of all four non-rational roots is a+ a = 0, so any three of these roots
cannot sum to zero. □

Lemma 4.8 (12, 41). Let k be a field with |k| ≥ 11. Assume that k admits a separable
degree 4 extension. Then there is a smooth cubic surface over k with 5 k-rational lines.

Proof. Let m(t) = t4 + at2 + bt + c ∈ k[t] be a separable irreducible polynomial, which
exists by Lemma 4.3. Since the sum of the roots of m(t) is zero, no three roots of m(t)
can sum to zero. Let s1, . . . , s6 be the

(
4
2

)
sums of pairs of roots of m(t). We want to
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pick r1, r2 ∈ k× such that r1, r2 ̸= si for each i. There are at most six elements to avoid
(in the case that each si ∈ k and all are distinct). We thus pick r1 ∈ k× − {s1, . . . , s6}
and r2 ∈ k× − {±r1, s1, . . . , s6}. Since |k| ≥ 11, such a choice of r1, r2 is possible. Now
G(t) = (t − r1)(t − r2) ·m(t) satisfies the desired criteria, since the sum of all roots is
−(r1 + r2) ̸= 0 and any sum of three roots involving r1 or r2 cannot be zero. □

Lemma 4.9 (11, 21, 31). Let k be a field with |k| ≥ 4. Assume that k admits separable
extensions of degree 2 and 3. Then there is a smooth cubic surface over k with 3 k-
rational lines that are skew.

Proof. Pick a ∈ k× − {−1}. By Lemma 4.3, there are separable irreducible polynomials
m(t) = t3 + at2 + bt+ c ∈ k[t] and n(t) = t2 + t+ d ∈ k[t]. Since a ̸= 0, the three roots
of m(t) do not sum to zero. Note that no three of the five roots of m(t) and n(t) sum to
zero. Indeed, the roots of n(t) sum to −1, and no root of m(t) can be an element of k.
If two roots of m(t) and one root of n(t) sum to zero, then the remaining roots rm, rn
of m(t), n(t), respectively, sum to −a− 1. But this would imply that rm = −rn − a− 1
is a root of the irreducible polynomial n(−t − a − 1) ∈ k[t], which in turn implies that
n(−t − a − 1) must be an irreducible factor of m(t). Since m(t) is irreducible, such a
factor does not exist.

Finally, take s ∈ k× −{1,−a− 1, }. Then G(t) = (t+ s) ·m(t) · n(t) satisfies the desired
criteria. Indeed, the degree 5 term is a + s + 1 ̸= 0. Moreover, no three roots of G(t)
sum to zero. We have already seen that no three roots of m(t) · s(t) sum to zero, and
no two roots of m(t) can sum to an element of k. The remaining possibility is that the
sum of the roots of n(t) is s, but we have chosen s ̸= 1. □

Lemma 4.10 (23). Let k be a field with |k| ≥ 5. Assume that k admits a separable
extension of degree 2. Then there is a smooth cubic surface over k with 3 k-rational
lines that are coplanar.

Proof. First assume char k = 2. Pick a separable irreducible polynomial m(t) = t2 + t+
a ∈ k[t] (which exists due to Lemma 4.3). Now pick distinct α, β ∈ k − {0, 1} such that
α ̸= β + 1 (which exist since |k| ≥ 5), and set n(t) = m(t+ α) = t2 + t+ a+ α2 + α and
p(t) = m(t+β) = t2+t+a+β2+β. Since α, β ̸= 0, 1, we have α2+α ̸= 0 and β2+β ̸= 0.
Since α ̸= β and α ̸= β+1, we have that (α, β) is not a solution to (x+y)(x+y+1) = 0
and hence α2 + α ̸= β2 + β. In particular, the polynomials m(t), n(t), and p(t) are all
distinct, so their six collective roots must also be distinct. Moreover, the sum of the four
roots of any two of m(t), n(t), p(t) is zero, so no three of these roots can sum to zero.
The sum of all six roots is 1, so it remains to check that the sum of three roots, one
from each of m(t), n(t), p(t), cannot be zero. Then G(t) = m(t) · n(t) · p(t) will satisfy
the desired criteria.

Let µ1, µ2 be the roots of m(t). The roots of n(t) are µ1+α, µ2+α, and the roots of p(t)
are µ1 + β, µ2 + β. The sum of three roots, one from each of m(t), n(t), p(t), is therefore
either 3µi + α + β = µi + α + β for i ∈ {1, 2} or 2µi + µj + α + β = µj + α + β for
{i, j} = {1, 2}. Since α, β ∈ k and µi, µj ̸∈ k, these sums are non-zero.
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Now assume char k ̸= 2. If char k ̸= 3, let a = 2. If char k = 3, pick a ∈ k − F3.
Then there is a separable irreducible polynomial m(t) = t2 + at + b ∈ k[t]. Pick γ ∈
k − {0,±1,−a

2
− 1}, and set n(t) = m(t + 1) and p(t) = m(t + γ). Since γ ̸= 0, 1,

the polynomials m(t), n(t), p(t) are distinct. The sum of the four roots of any two of
m(t), n(t), p(t) is k-rational, so no three of these roots can sum to zero (or else the fourth
root would be rational). The sum of all six roots is −a − 2 − 2γ ̸= 0 (by our choice of
γ), so it remains to check that the sum of three roots, one from each of m(t), n(t), p(t),
cannot be zero. Then G(t) = m(t) · n(t) · p(t) will satisfy the desired criteria.

Let µ1, µ2 be the roots of m(t). The roots of n(t) are µ1− 1, µ2− 1, and the roots of p(t)
are µ1 − γ, µ2 − γ. The sum of three roots, one from each of m(t), n(t), p(t), is either
3µi − 1 − γ or 2µi + µj − 1 − γ = µi − a − 1 − γ. We have assumed that γ ̸= −1, so
3µi−1−γ is not zero even in characteristic 3. Since 1, a, γ ∈ k and µ1, µ2 ̸∈ k, it follows
that neither of these sums can be zero. □

Lemma 4.11 (11, 51). Let k be a field. Assume that k admits a separable extension of
degree 5. Then there is a smooth cubic surface over k with 2 k-rational lines.

Proof. Pick a separable irreducible polynomial m(t) = t5 + at3 + bt2 + ct + d. We will
set G(t) = (t+ 1) ·m(t). If three roots of m(t) sum to 0, then so do the remaining two
roots of m(t). If two roots of m(t) sum to 1, then the roots of G(t) will sum to 0. It
thus suffices to show that no two roots of m(t) can sum to 0 or 1.

In characteristic 2, two roots of m(t) summing to zero implies that m(t) has a repeated
root, which contradicts our assumption that m(t) is separable. If char k ̸= 2 and r is a
root of m(t), then 0 = m(r)+m(−r) = 2br2+2d. If b ̸= 0, then the minimal polynomial
of r has degree less than 5, contradicting the irreducibility of m(t). Otherwise, we have
2d = 0, which implies that 0 is a root of m(t) and again contradicts the irreducibility of
m(t). If two roots of m(t) sum to 1, then there is a root r such that m(r) = m(1−r) = 0.
Thus r is a root of

m(t) +m(1− t) = 5t4 − 10t3 + (10 + 3a+ 2b)t2

− (5 + 3a+ 2b+ c)t+ 1 + a+ b+ c+ 2d.

If char k ̸= 5, then m(t) +m(1− t) is a non-zero polynomial of degree strictly less than
5. This again contradicts the irreducibility of m(t). If char k = 5, then m(t) +m(1− t)
is identically zero only if b = −3a

2
= a, c = 0, and d = −1+a+b+c

2
= 2+a

4
= 3 + 4a. If

m(t) +m(1− t) is identically zero, then take G(t) = (t+ 1) ·m(t+ 1). Since m(t+ 1) =
t5 + at3 + 4at2 + a + 4, we follow the previous arguments to find that no two roots of
m(t+ 1) sum to 0 or 1, as desired. □

Lemma 4.12 (21, 41). Let k be a field with |k| ≥ 8. Assume that k admits separable
extensions of degree 2 and 4. Then there is a smooth cubic surface over k with 1 k-
rational line.

Proof. Pick a ∈ k×. Let m(t) = t2 + at + b and n(t) = t4 + ct2 + dt + e be separable
irreducible polynomials. Since all four roots of n(t) sum to zero, no three of these roots
can sum to zero. All six roots of m(t) and n(t) sum to −a ̸= 0. Moreover, the two roots
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of m(t) sum to −a ∈ k, so no root of n(t) can yield zero when summed with the roots of
m(t). It remains to show that a root of m(t) and two roots of n(t) cannot sum to zero.
We then set G(t) = m(t) · n(t).

Let ν1, . . . , ν4 be the roots of n(t). We want to guarantee that each of the roots of
m(t) are not of the form −(νi + νj) for some i, j. If the splitting field of m(t) is not a
subfield of k(ν1), then we are done. Otherwise, let ri,j ∈ k be the trace of −(νi + νj), so
that the minimal polynomial of −(νi + νj) has penultimate coefficient −ri,j. If we pick
a ∈ k× −

⋃
1≤i<j≤6{−ri,j} (which is possible since |k| ≥ 8), then a root of m(t) and two

roots of n(t) cannot sum to zero. □

Lemma 4.13 (32). Let k be a field with |k| ≥ 4. Assume that k admits a separable
extension of degree 3. Then there is a smooth cubic surface over k with no k-rational
lines.

Proof. First assume char k is not 2 or 3. Pick separable irreducible polynomials m(t) =
t3 + 2t2 + at + b and n(t) = t3 + t2 + ct + d. By design, the three roots of m(t) and
n(t), respectively, do not sum to zero, and all six roots sum to −3 ̸= 0. It remains to
show that one root of m(t) and two roots of n(t) do not sum to zero (with the same
argument holding for two roots of m(t) and one root of n(t)). Once we have done so,
G(t) = m(t) · n(t) will satisfy the desired criteria.

Let µ1, µ2, µ3 and ν1, ν2, ν3 be the roots of m(t) and n(t), respectively. Assume µ1+ ν1+
ν2 = 0. Then ν3 = µ1+

∑3
i=1 νi = µ1+1. The minimal polynomial of µ1+1 is m(t− 1),

so this implies that m(t−1) = n(t). But the degree 2 coefficient of m(t−1) is 2−3 = −1,
and the degree 2 coefficient of n(t) is 1. These are not equal when char k ̸= 2.

Now assume char k = p is 2 or 3. Since |k| ≥ 4, we may pick α ∈ k− Fp. Pick separable
irreducible polynomials m(t) = t3 + αt2 + at+ b and n(t) = t3 + t2 + ct+ d. Again, the
three roots of each of these polynomials do not sum to zero, and their six roots sum to
−α−1 ̸= 0. Using the same notation as before, if µ1+ν1+ν2 = 0, then ν3 = µ1+1. The
minimal polynomial of µ1 +1 is m(t− 1) = n(t), but the respective degree 2 coefficients
are then α− 3 and 1. Since α ∈ k − Fp, it follows that α− 3 ̸= 1. □

Lemma 4.14 (61). Let k be a field with |k| ≥ 23. Assume that k admits a separable
extension of degree 6. Then there is a smooth cubic surface over k with no k-rational
lines.

Proof. First, assume that char k ̸= 3. Let m(t) = t6 + t5 + a4t
4 + . . . + a0 ∈ k[t] be a

separable irreducible polynomial with roots r1, . . . , r6. If no three of the roots ofm(t) sum
to zero, then we set G(t) = m(t). Otherwise, consider m(t− α) for some α ∈ k×, whose
roots are given by r1+α, . . . , r6+α. If r1+r2+r3 = 0, then (r1+α)+(r2+α)+(r3+α) =
3α ̸= 0. However, it may happen that some other roots satisfy ri + rj + rℓ + 3α = 0. If
this happens, we take β ∈ k−{0, α} and investigate m(t− β). There are

(
6
3

)
= 20 sums

of triples of roots to consider, so it appears that |k| ≥ 21 suffices for our purposes. In
fact, there is one more case to avoid: since

∑6
i=1 ri = −1, we have

∑6
i=1(ri +

1
6
) = 0. By

assuming |k| ≥ 23, we guarantee that there exists α ∈ k − {−1
6
} such that m(t − α) is
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separable and irreducible, has no three roots summing to zero, and has all six roots not
summing to zero. We then set G(t) = m(t− α).

Now assume char k = 3. Since |k| ≥ 23, we have |k| ≥ 27 in characteristic 3. Let m(t) =
t6+a5t

5+ . . .+a0 ∈ k[t] be a separable irreducible polynomial with a5 ̸= 0. As before, let
r1, . . . , r6 be the roots of m(t). If no three roots of m(t) sum to zero, then we are done.
Otherwise, we will work with the scaled reciprocal of m(t) (possibly after shifting). If
a1 ̸= 0, let m∗(t) := a−1

0 t6 ·m(t−1) be the scaled reciprocal of m(t). If a1 = 0, then note
that the degree 1 coefficient of m(t−α) is 2a5α4−a4α

3−2a2α = α(2a5α
3−a4α

2−2a2).
The sum of any three roots ofm(t−α) is of the form (ri+α)+(rj+α)+(rℓ+α) = ri+rj+rℓ
(since we are in characteristic 3). By choosing α ∈ k× not a root of 2a5t3 − a4t

2 − 2a2,
we may assume that the linear term of m(t) is non-zero, so that the degree 5 coefficient
of m∗(t) is non-zero.

The roots of m∗(t) are r−1
1 , . . . , r−1

6 . The assumption that r1 + r2 + r3 = 0 implies that
r1 = −r2 − r3, so

(r1r2r3)(r
−1
1 + r−1

2 + r−1
3 ) = r1r2 + r1r3 + r2r3

= −(r2 + r3)
2 + r2r3

= −(r22 + r2r3 + r23)

= −(r2 − r3)
2.

Since r2 ̸= r3 by the separability of m(t), we deduce that r−1
1 + r−1

2 + r−1
3 ̸= 0. If

r−1
i + r−1

j + r−1
ℓ = 0 for some i, j, ℓ, then consider the reciprocal polynomial of m(t−α).

The sum of any three roots is of the form
1

ri + α
+

1

rj + α
+

1

rℓ + α
=
rirj + rirℓ + rjrℓ + 2α(ri + rj + rℓ) + 3α

(ri + α)(rj + α)(rℓ + α)

=
rirj + rirℓ + rjrℓ + 2α(ri + rj + rℓ)

(ri + α)(rj + α)(rℓ + α)

=
rirj + rirℓ + rjrℓ − α(ri + rj + rℓ)

(ri + α)(rj + α)(rℓ + α)
.

As we have seen, if ri + rj + rℓ = 0, then rirj + rirℓ + rjrℓ ̸= 0, and the converse
holds as well. It remains to ensure that rirj + rirℓ + rjrℓ ̸= α(ri + rj + rℓ) when
ri+ rj + rℓ ̸= 0. There are

(
6
3

)
= 20 sums of triples to consider. Because |k| > 24, we can

pick α ∈ k× − {ρ : 2a5ρ3 + a4ρ
2 + 2a2 = 0} such that rirj + rirℓ + rjrℓ ̸= α(ri + rj + rℓ)

for all i, j, ℓ. Let G(t) be the scaled reciprocal of m(t−α). Our choice of α ensures that
the degree 5 coefficient of G(t) is non-zero and that no three roots of G(t) sum to zero,
as desired. □

5. Some fields with all line counts

Using Theorem 1.3, we can understand the set of line counts for smooth cubic surfaces
over a given field by looking at the field’s Galois theory. For example, since finite
fields admit finite (separable) extensions of arbitrary degree, every line count must be
realized over finite fields of cardinality at least 23 (reproving Loughran and Trepalin’s
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classification of line counts over finite fields in this range [LT20]). In order to prove
Corollary 1.7, it suffices to show that finitely generated fields and finite transcendental
extensions of arbitrary fields each admit separable extensions of arbitrary degrees.

Lemma 5.1. Let k be a finitely generated field or a finite transcendental extension of
another field. Then for each integer n > 0, there exists a finite separable extension k′ of
k with [k′ : k] = n.

Proof. If k is a finitely generated field, then let k0 be its prime field (i.e. Q if char k = 0
and Fp if char k = p). If k/k0 is finite, then k is a number field in characteristic 0 or of
the form Fq in positive characteristic. In the latter case, take k′ = Fqn . In the former
case, let O be the ring of integers of k, and let u ∈ O be an irreducible non-zero non-unit
(such as the uniformizer of a prime ideal). Then there is no element s ∈ O such that
s2 = u, so m(t) = tn + ut+ u is irreducible in k[t] by Eisenstein’s criterion and Gauss’s
lemma. It thus suffices to set k′ to be the splitting field of m(t).

Now suppose k/k0 is not finite. Since k is finitely generated, there exist generators
z1, . . . , zm such that k = k0(z1, . . . , zm). Since k/k0 is not finite, at least one of z1, . . . , zm
is transcendental over k0. By reordering if necessary, we may assume that zm is tran-
scendental over k0(z1, . . . , zm−1). Let F = k0(z1, . . . , zm−1). Consider R = F [zm], which
is a UFD (since it is a polynomial ring over a field) whose fraction field is k. The as-
sumption that zm is transcendental over F implies that R is not a field, so we can pick
a non-zero non-unit g ∈ R. Let u be an irreducible factor of g. Then m(t) = tn + ut+ u
is irreducible over R by Eisenstein’s criterion and hence irreducible over k by Gauss’s
lemma. Moreover, m′(t) is not identically zero, so m(t) is separable. The splitting field
k′ of m(t) is thus a degree n separable extension of k.

Finally, if k is a finite transcendental extension of some field k0, then there exist tran-
scendental elements z1, . . . , zm such that k = k0(z1, . . . , zm). We may thus repeat the
arguments of the previous paragraph to obtain the desired extension k′/k. □

Appendix A. Subgroups of W (E6)

The following Magma code, provided to us by Dan Loughran, classifies all possible line
counts on a smooth cubic surface over any field by considering all conjugacy classes of
subgroups of W (E6). This provides a modern proof of Theorem 1.2. This code is a
variant of the freely available code accompanying [JL15,BFL19].

R_e6 := RootDatum ("E6");
Cox_e6 := CoxeterGroup(R_e6);
we6 := StandardActionGroup(Cox_e6 );
list:= SubgroupClasses(we6);

number_of_lines := function(G);
temp :=0;
for O in Orbits(G) do
if #O eq 1 then
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temp:=temp +1;
end if;

end for;
return temp;
end function;

for rec in list do
G := rec ‘subgroup;
print Order(G),number_of_lines(G);
end for;
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(a) Zero lines (b) One line (c) Two skew lines

(d) Three skew lines (e) Three coplanar lines (f) Five lines

(g) Seven lines (h) Nine lines (i) Fifteen lines

Figure 3. Intersection graphs
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