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Abstract. We prove that the local Euler class of a line on a degree 2n−1 hypersurface
in projective n+ 1 space is given by the product of indices of Segre involutions. Segre
involutions and their associated indices were first defined by Finashin and Kharlamov
over the reals. Our result is valid over any field of characteristic not 2 and gives an
infinite family of problems in enriched enumerative geometry with a shared geometric
interpretation for the local type.

1. Introduction

We begin with a brief statement of our main result. We then give the motivation for our
result, as well as the relevant terminology, in Section 1.1. Sufficiently motivated readers
who are tired of history may skip to Section 1.2, where we summarize the ideas behind
our proofs.

In short, we give a geometric interpretation for the enumerative weight of a line on a
general degree 2n − 1 hypersurface in Pn+1 over an arbitrary field of characteristic not
2, generalizing work of Kass–Wickelgren in the n = 2 case [KW21] and Pauli in the
n = 3 case [Pau22]. Our geometric interpretation is directly inspired by a construction
of Finashin and Kharlamov [FK21].

Setup 1.1. Let X ⊂ Pn+1
k be a general hypersurface of degree 2n − 1 over a field k.

Given a line ℓ ⊂ X with field of definition k(ℓ), there is an associated rational curve
G(ℓ) ⊂ Pn−1

k of degree 2n − 2. Over k there are exactly
(
n
2

)
planes of dimension n − 3

meeting G(ℓ) in 2n−4 points. Each such (2n−4)-secant plane S, whose field of definition
we denote k(S), determines an involution iS : ℓk(S) → ℓk(S). The fixed points of iS are
defined over k(S)(

√
αS) for some αS ∈ k(S)×/(k(S)×)2.

Let GW(k) denote the Grothendieck–Witt ring of virtual quadratic forms over k. Given
a ∈ k×, let ⟨a⟩ ∈ GW(k) represent the isomorphism class of the bilinear form [(x, y) 7→
axy]. Given a field extension L/k, let NL/k : L → k and TrL/k : L → k denote the field
norm and field trace, respectively.

We define the Segre index of ℓ ⊂ X to be

seg(X, ℓ) := Trk(ℓ)/k
〈∏

S

Nk(S)/k(ℓ)(αS)
〉
∈ GW(k),
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where this product ranges over the (n− 3)-planes that are (2n− 4)-secant to G(ℓ). Note
that k(ℓ)/k is separable for general X by e.g. [EH16, Theorem 6.34], so the field trace
here is non-degenerate.

Theorem 1.2 (Main Theorem). Let X = V(F ) ⊂ Pn+1
k be a general hypersurface of

degree 2n− 1 over a field k. Let

σF : G(1, n+ 1) → Sym2n−1(S∨)

denote the section determined by F , where S is the tautological bundle on the Grassman-
nian of lines in Pn+1. Let indℓ σF ∈ GW(k) denote the local index of σF at a line ℓ ⊂ X.
Then

indℓ σF = seg(X, ℓ).

Theorem 1.2 allows us to immediately deduce a quadratically enriched count of lines on
a degree 2n− 1 hypersurface in Pn+1. This is because the Euler number underlying the
total count is completely determined by the (signed) real and complex counts [Lev19,
Example 8.2], [BW23, Corollary 6.9], the real count is (2n− 1)!! [FK12, OT14], and the
complex count is computable by Schubert calculus.

Theorem 1.3. Let X ⊂ Pn+1
k be a general hypersurface of degree 2n− 1 over a field k.

Let c(n) denote the top Chern number of Sym2n−1(S∨) → G(1, n+1). Then we have an
equality ∑

ℓ⊂X

seg(X, ℓ) = (2n− 1)!!⟨1⟩+ c(n)− (2n− 1)!!

2
H

in GW(k).

These theorems provide an infinite family of enriched enumerative problems with a shared
geometric interpretation for their local indices. In the language of the geometricity
question [McK22, Appendix C], these “lines on hypersurfaces” problems belong to the
same phylum of enumerative problems, as one would expect.

1.1. Motivation. Famously, there are 27 lines on every smooth complex cubic surface
[Cay49]. A modern method for calculating the number 27 is as the top Chern number
of the bundle

Sym3(S∨) → G(1, 3),

where S → G(1, 3) is the tautological bundle on the Grassmannian of projective lines in
P3. More generally, one can prove that there are finitely many lines on a generic degree
2n− 1 hypersurface in Pn+1, all of which are reduced. The top Chern number of

Sym2n−1(S∨) → G(1, n+ 1)

can then be computed via Schubert calculus, giving the 2875 lines on a quintic threefold
or, for those impressed by large numbers, the 1,192,221,463,356,102,320,754,899 lines on
a novemdecic tenfold (see e.g. [EH16, §6.5]).

Lines on hypersurfaces generally make for good conversation with non-mathematicians,
such as relatives or university administrators — most people can appreciate the visual
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Figure 1. Segre involution on a cubic surface

beauty of a cubic surface with its configuration of lines, and administrators tend to be
impressed by large numbers. However, as with all online image searches, one should be
careful when pulling up a picture of a cubic surface and its lines at a family party. This
is because any such picture will actually depict a real cubic surface, which may have
fewer than 27 real lines.

1.1.1. The real story. Schläfli proved that every smooth real cubic surface has 3, 7, 15,
or 27 real lines [Sch58]. Nearly a century later, Segre constructed an involution on each
real line on a cubic surface [Seg42], which we now describe. Let ℓ be a real line on a real
cubic surface X. For each point p ∈ ℓ, the intersection TpX ∩X is the union of ℓ and a
residual conic Qp ⊂ TpX. The intersection Qp ∩ ℓ consists of p and another point, say q.
The Segre involution swaps p and q (see Figure 1).

Define hyperbolic lines as those whose Segre involution has real fixed points and elliptic
lines as those whose Segre involution has complex fixed points. For each topological
type of real cubic surface, Segre computed the number of hyperbolic and elliptic lines
contained therein. These computations imply the striking formula

(1.1) #{hyperbolic lines} −#{elliptic lines} = 3,

although this seems to have gone unnoticed until it was observed by Finashin–Kharlamov
[FK12] and Okonek–Teleman [OT14] about 70 years later. Equation 1.1 should be viewed
as the correct analog of the 27 lines on a cubic surface over C. While the total number
of real lines on a cubic surface over R depends on the choice of cubic surface, the signed
count of lines given in Equation 1.1 is independent of the choice of cubic surface.

Inspired by Equation 1.1, Finashin and Kharlamov set out to give a signed count of real
lines on degree 2n−1 hypersurfaces in RPn+1. They proved that the overall signed count
is equal to (2n− 1)!! [FK12], which arises as the Euler number of the real vector bundle
Sym2n−1(S∨) → G(1, n+1). See also [OT14, Sol06] for related results. To complete the
signed count of real lines on hypersurfaces, there also needs to be a geometric determina-
tion of the type of a line, analogous to Segre involutions determining whether a line on a
cubic surface is hyperbolic or elliptic. Finashin and Kharlamov gave two such geometric
interpretations (and proved that they are equivalent) in [FK21]: Welschinger weights
and Segre indices. We will only discuss Segre indices, as these are the interpretation
relevant for our article.
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Given a smooth hypersurface X ⊂ RPn+1, there is a Gauß map

G : X → RPn+1

p 7→ TpX,

where the target RPn+1 is the dual projective space parameterizing codimension 1 hy-
perplanes in RPn+1. If we restrict G to a line ℓ ⊂ X, then the tangent plane G(p) := TpX
contains ℓ for each p ∈ ℓ. The flag variety of codimension 1 hyperplanes in RPn+1 con-
taining a given line (in this case, ℓ) is isomorphic to RPn−1. We thus obtain a restricted
Gauß map

G|ℓ : ℓ → RPn−1.

The image G(ℓ) ⊂ RPn−1 is a rational curve of degree 2n − 2, which we refer to as the
Gauß curve of ℓ. For n ≥ 3, a generic degree 2n − 2 rational curve in RPn−1 has a
finite number of (n− 3)-dimensional (2n− 4)-secants; in fact, there are

(
n
2

)
such secants

defined over C.

Each secant defined over R determines a Segre involution as follows. Let S be an (n−3)-
plane meeting G(ℓ) in 2n−4 points defined over R. There is a pencil of (n−2)-dimensional
(i.e. codimension 1 in Pn−1) hyperplanes containing S. Each (n− 2)-plane in this pencil
meets the Gauß curve G(ℓ) in 2n − 2 points, by Bézout’s theorem: the 2n − 4 secant
points given by S ∩G(ℓ), and another pair of points. The Segre involution associated to
S swaps this residual pair of points, as depicted in Figure 2.1

The Segre index of ℓ, which we denote seg(X, ℓ), is a product of indices associated to
the Segre involutions on G(ℓ) corresponding to the secant defined over R. This Gauß
curve is the embedding of a conic Qℓ ⊂ RP2, and the Segre involution associated to a
secant S pulls back to an involution on Qℓ. Define the index of this involution, denoted
segS(X, ℓ), to be +1 if its fixed points are real and −1 if its fixed points are complex.
Then

seg(X, ℓ) :=
∏

real secants S

segS(X, ℓ),

and Finashin and Kharlamov proved that

(1.2)
∑
ℓ⊂X

seg(X, ℓ) = (2n− 1)!!

for a generic degree 2n− 1 hypersurface in RPn+1. Note that Equation 1.1 is the n = 2
case of Equation 1.2. For n = 2, the Segre index agrees with the convention that assigns
+1 to hyperbolic lines and −1 to elliptic lines on a cubic surface.

1The plane quartic in Figure 2a is the well-known ampersand curve. To construct a rational space
sextic curve (like the one in Figure 2b) and its six quadrisecants, it helps to use a remarkable theorem
of Dye stating that such quadrisecants form half of a double six of lines on a cubic surface containing
the sextic [Dye97]. See Remark 3.12 for more details.
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Figure 2. Segre involutions

1.1.2. The arithmetic story. Our goal (stated previously as Theorem 1.3) is to prove an
analog of Equation 1.2 over an arbitrary base field. The framework for such a theorem
is the enriched enumerative geometry program, in which Kass and Wickelgren’s count of
lines on cubic surfaces is an early seminal result [KW21].

Let k be a field. We assume that char k ̸= 2, as we want involutions to behave well over k.
Let GW(k) denote the Grothendieck–Witt ring of isomorphism classes of symmetric non-
degenerate bilinear forms. This ring is generated by classes of the form ⟨a⟩ = [(x, y) 7→
axy] for a ∈ k×. Kass and Wickelgren defined an Euler “number” e(Sym3(S∨)) ∈ GW(k)
that satisfies a Poincaré–Hopf theorem: given a smooth cubic surface X over k, the
associated section σX : G(1, 3) → Sym3(S∨) has local indices indℓ σX ∈ GW(k) such
that

(1.3)
∑
ℓ⊂X

indℓ σX = e(Sym3(S∨)).

In order to turn Equation 1.3 into an enumerative theorem, one needs to compute the
Euler number on the right hand side and give a geometric interpretation of the local
indices on the left hand side. Kass and Wickelgren computed

e(Sym3(S∨)) = 15⟨1⟩+ 12⟨−1⟩

and proved that indℓ σX is determined by the Segre involution associated to ℓ. Just as
the Segre involution of a real line has either real or complex fixed points, the fixed points
of the Segre involution on a line with field of definition k(ℓ) are defined over k(ℓ)(

√
αℓ)
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for some αℓ ∈ k(ℓ)×/(k(ℓ)×)2. Kass and Wickelgren proved that

indℓ σX = Trk(ℓ)/k⟨αℓ⟩ ∈ GW(k),

giving the desired geometric description of the relevant local indices. Altogether, we get
the count

(1.4)
∑
ℓ⊂X

Trk(ℓ)/k⟨αℓ⟩ = 15⟨1⟩+ 12⟨−1⟩.

One of the key features of Equation 1.4 is that it generalizes both the complex and real
counts of lines on cubic surfaces. The rank of Equation 1.4 states that∑

ℓ⊂Xk

1 = 27,

counting 27 geometric lines on every smooth cubic surface. When k admits a real em-
bedding, the signature of Equation 1.4 exactly recovers Equation 1.1, as hyperbolic and
elliptic lines respectively satisfy αℓ = +1 and αℓ = −1, while the signature of TrC/R⟨αℓ⟩
is 0 for any complex line.

Lines on quintic threefolds over general fields were considered by Levine and Pauli.
Levine [Lev19, Example 8.3] computed

e(Sym5(S∨)) = 1445⟨1⟩+ 1430⟨−1⟩,
while Pauli [Pau22] provided a geometric interpretation of the local indices contributing
to this Euler number. The geometric interpretation is a quadratic enrichment of (the
n = 3 case of) the Segre index described in Section 1.1.1. In this case, the Gauß curve
G(ℓ) associated to a line ℓ is a plane quartic, and geometrically there are

(
3
2

)
= 3 planes

of dimension 3− 3 = 0 that meet this quartic with order 2 · 3− 4 = 2. In other words,
G(ℓ) is a plane quartic with 3 nodes. The Segre involution

iν : G(ℓ) → G(ℓ)
associated to a node ν ∈ G(ℓ) is given by taking a pencil of lines through ν, intersecting
each line L with G(ℓ), and swapping the pair of points in G(ℓ)∩L−ν (see Figure 2a, where
S = ν). The fixed points of iν are defined over k(ν)(

√
αν) for some αν ∈ k(ν)×/(k(ν)×)2,

and the Segre index of ℓ is defined as

seg(X, ℓ) := Trk(ℓ)/k
〈∏

ν

Nk(ν)/k(ℓ)(αν)
〉
.

Remark 1.4. While we have described the Segre involution associated to a node ν as
an involution of the form iν : G(ℓ) → G(ℓ), one can equivalently consider the pullback of
iν to an involution ℓ. We will prove that the fixed points of the involutions on G(ℓ) and ℓ
have isomorphic residue fields. This will imply that seg(X, ℓ) is independent of whether
we think of the involution occurring on G(ℓ) or ℓ, so we will generally not distinguish
between these two perspectives.

Already at the time of [Pau22], it was expected that a similar description of the local
index in terms of Segre involutions should hold in the general case of lines on degree
2n− 1 hypersurfaces in Pn+1. However, the proof in [Pau22] utilizes the fact that for a
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general rational plane quartic, its trio of nodes lie in general position (i.e. not on a line).
It is not true that the (n − 3)-dimensional (2n − 4)-secants to a general degree 2n − 2
space curve in Pn−1 are in general position when n > 3, since

(
n
2

)
> dimG(n−3, n−1)+1

in this range. Furthermore, the proofs in [FK21] rely on wall-crossing arguments, which
do not readily generalize to other fields.

As we have claimed in Theorem 1.2, the quadratic Segre index of a line indeed computes
the local index contributing to the Euler class e(Sym2n−1(S∨)). In the next subsection,
we will outline the proof ideas that allowed us to sidestep the difficulties that arise when
trying to generalize from R to k or from n = 3 to n > 3.

1.2. Ideas behind the proof. As previously mentioned, we use a construction of Fi-
nashin and Kharlamov [FK21, Section 6] to relate lines on hypersurfaces to involutions
arising from the secants of their associated Gauß curves, and equivalently to involutions
associated to plane conics avoiding an auxiliary set of points. This construction allows us
to generalize beyond the cases of cubic surfaces [KW21] and quintic threefolds [Pau22].

In order to show that the local index of a line is equal to the product of Segre indices
associated to the Gauß curve or plane conic, we essentially need to show that two de-
terminants are equal up to squares2. Over R, this boils down to showing that two real
numbers have the same sign; this is where Finashin–Kharlamov utilize a wall-crossing
argument. Over arbitrary fields, we instead will show that these two determinants are
given by regular maps with the same zero locus. This step more or less falls out of the
geometry, which will allow us to express these regular maps in terms of resultants. The
primary difficulties arise from the fact that conics over non-closed fields need not have
rational points. We overcome this difficulty by modifying Finashin and Kharlamov’s
construction and working with parameterized conics.

The final step is to show that the relevant regular maps agree at a point outside of
their zero locus. This is done with an elementary, although somewhat lengthy, argument
involving only basic linear algebra.

1.3. Outline. Here is a quick outline of the article.

• In Section 2, we discuss the bundle Sym2n−1 S∨ → G(1, n+1), the section induced
by a hypersurface, our choice of coordinates on G(1, n + 1), and our local triv-
ializations of Sym2n−1 S∨. We then compute the local index and give examples
discussing the cases of cubic surfaces and quintic threefolds.

• In Section 3, we discuss Finashin and Kharlamov’s conic models for rational space
curves. This includes a dictionary translating between Gauß curves with their
secants and plane conics with their associated loci of points. We also prove that
the index of a Gauß curve can be computed in terms of a conic model.

2We say that two elements x, y of a field K are equal up to squares if there exists c ∈ K× such that
x = c2y.
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• We conclude in Section 4 by proving that the local index (given in Section 2)
is equal to the index of a conic model (given in Section 3), thereby proving
Theorem 1.2.

Acknowledgements. We thank Sergey Finashin and Viatcheslav Kharlamov for help-
ful correspondence, including explaining the ideas behind Lemma 3.11 to us. We also
thank Kirsten Wickelgren for helpful discussions.

Sabrina Pauli acknowledges support by Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) through the Collaborative Research Centre TRR 326 Geom-
etry and Arithmetic of Uniformized Structures, project number 444845124.

Felipe Espreafico acknowledges support of the European Research Council through the
grant ROGW-864919.

2. The local index

In this section, we will recall the definition and computation of the local index of a line
on a degree 2n − 1 hypersurface in Pn+1. The procedure for computing this index is
standard, so the material in this section will be standard as well. It is the interpretation
of this index in terms of the geometry at hand that is interesting and will comprise the
balance of the article.

Let k be a field. Let G(1, n + 1) denote the Grassmannian of projective lines in Pn+1
k .

This Grassmannian is isomorphic to G(2, n+ 2), the Grassmannian of affine 2-planes in
affine (n+ 2)-space. Let S → G(2, n+ 2) denote the tautological bundle, which we can
also view as a rank 2 vector bundle S → G(1, n+ 1). The rank of the bundle

Sym2n−1(S∨) → G(1, n+ 1)

is equal to
(
2n−1+2−1

2n−1

)
= 2n = dimG(1, n+ 1), so a generic section of this bundle should

have a finite vanishing locus. Moreover, any degree 2n − 1 form F on Pn+1
k determines

a section

σF : G(1, n+ 1) → Sym2n−1(S∨)

ℓ 7→ F |ℓ
that vanishes precisely on those lines contained in the hypersurface V(F ). One can
then obtain an enriched count of the lines on V(F ) by computing the Euler number
e(Sym2n−1(S∨)) ∈ GW(k), using a Poincaré–Hopf formula to express e(Sym2n−1(S∨)) as
a sum of local degrees of σF over its vanishing locus, and giving a geometric interpretation
to these local indices. The Euler number and Poincaré–Hopf formula for this bundle are
given in [BW23, Theorem 1.1 and Corollary 6.9].

In order to compute the local indices of σF , we need to make a suitable choice of co-
ordinates on G(1, n + 1) and local trivializations of Sym2n−1(S∨). For coordinates, we
give coordinates centered about each line. Given a line ℓ ∈ G(1, n+ 1), we base change
to the field of definition k(ℓ) and pick coordinates [u : v : x1 : . . . : xn] of Pn+1

k(ℓ) such
that ℓ = V(x1, . . . , xn). Now [u : v] are the coordinates on ℓ, and we have an open
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affine Uℓ ⊂ G(1, n+ 1) with coordinates (a1, b1, . . . , an, bn) corresponding to lines of the
(parametric) form

{[u : v : a1u+ b1v : . . . : anu+ bnv] : [u, v] ∈ P1}.
We obtain a local trivialization of Sym2n−1(S∨) by reading off the coefficients in the
monomial basis {u2n−1, u2n−2v, . . . , v2n−1}.

Remark 2.1. Our use of base change to define coordinates may appear problematic, but
no problems actually arise. The field of definition k(ℓ) is always a separable extension
of k [EH16, Theorem 6.34], and the local index can always be computed by “changing
base and taking trace” over separable extensions [BBM+21].

Our chosen coordinates and trivializations need to be compatible (in a precise sense)
with a chosen relative orientation of the bundle Sym2n−1(S∨) → G(1, n + 1), which is
an isomorphism

det Sym2n−1(S∨)⊗ ωG(1,n+1)
∼= L⊗2

for some line bundle L → G(1, n+1). Such an isomorphism need not exist for a general
vector bundle, but it is a fact that Sym2n−1(S∨) → G(1, n + 1) is relatively orientable
(see e.g. [OT14, Corollary 7] and [BW23, Corollary 6.9]). We will not explicitly show
that our coordinates and trivialization are compatible with this relative orientation, but
rather simply refer to [KW21, Section 5] and [Pau22, Section 2.2] for a demonstration of
the proof in the n = 2 and n = 3 cases. The n > 3 cases are all completely analogous.

2.1. Computing the local index. Because ℓ is a simple zero of σF [EH16, Theo-
rem 6.34], the local index indℓ σF can be computed by using our coordinates and trivi-
alizations to write out σF as a polynomial in (a1, b1, . . . , an, bn) and taking the Jacobian
determinant of this polynomial [KW19, Lemma 9] and evaluating at (0, 0, . . . , 0, 0).

By our choice of coordinates [u : v : x1 : . . . : xn] on Pn+1, we may assume that

F = x1P1(u, v) + x2P2(u, v) + . . .+ xnPn(u, v) +R(u, v, x1, . . . , xn),

where Pi are homogeneous polynomials of degree 2n − 2 and R is a polynomial in the
ideal (x1, . . . , xn)

2. In our coordinates (a1, b1, . . . , an, bn) on Uℓ, the section σF becomes
the polynomial

σF (a,b) =
n∑

i=1

(aiu+ biv)Pi(u, v) +R(a1u+ b1v, . . . , anu+ bnv).

The partial derivatives evaluated at (0, . . . , 0) are now straightforward to compute:

∂σF

∂ai

∣∣∣∣
(0,...,0)

= uPi(u, v) and
∂σF

∂bi

∣∣∣∣
(0,...,0)

= vPi(u, v).

To compute the Jacobian matrix, it thus suffices to write out each Pi in terms of the
monomial basis {u2n−1, u2n−2v, . . . , v2n−1}, as this is our local trivialization of Sym2n−1(S∨).
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So let pj,i ∈ k(ℓ) be coefficients (for 1 ≤ i ≤ n and 0 ≤ j ≤ 2n− 2) such that

Pi(u, v) =
2n−2∑
j=0

pj,iu
jv2n−2−j.

Then the Jacobian matrix of σF at (0, . . . , 0) is

(2.1) AP1,··· ,Pn :=


p2n−2,1 0 p2n−2,2 0 · · · p2n−2,n 0
p2n−3,1 p2n−2,1 p2n−3,2 p2n−2,2 · · · p2n−3,n p2n−2,n

...
...

...
...

. . .
...

...
p0,1 p1,1 p0,2 p1,2 · · · p0,n p1,n
0 p0,1 0 p0,2 · · · 0 p0,n

 .

Now

(2.2) indℓ σF = Trk(ℓ)/k⟨detAP1,...,Pn⟩ ∈ GW(k).

2.2. Examples: lines on cubic surfaces and quintic threefolds. We conclude this
section by writing out the Jacobian matrix for the local index in the cases of lines on
cubic surfaces and quintic threefolds. We will then sketch how Kass–Wickelgren and
Pauli gave geometric interpretations of these determinants and what fails in the general
case.

Example 2.2 (Cubic surfaces). For cubic surfaces, we have indℓ σF = Trk(ℓ)/k⟨detAP1,P2⟩
with

AP1,P2 =


p2,1 0 p2,2 0
p1,1 p2,1 p1,2 p2,2
p0,1 p1,1 p0,2 p1,2
0 p0,1 0 p0,2

 .

Here, we have F = x1P1 + x2P2 + R with Pi(u, v) = p2,iu
2 + p1,iuv + p0,1v

2. Note that
detAP1,P2 is equal to the resultant of P1 and P2, which is where Kass and Wickelgren’s
geometric interpretation begins. The Gauß map along ℓ can be identified with the degree
2 map

G : ℓ → P1
k(ℓ)

[u : v] 7→ [P1(u, v) : P2(u, v)].

In particular, for each point p ∈ ℓ there is another point q such that TpV(F ) = TqV(F ).
The Segre involution i : ℓ → ℓ swaps p and q. The fixed points of i are defined over a
quadratic field extension k(ℓ)(

√
α) for some α ∈ k(ℓ)×/(k(ℓ)×)2, and the Segre index of

ℓ is Trk(ℓ)/k⟨α⟩.
To show that this Segre index describes indℓ σF , we need to show that α and Res(P1, P2)
agree up to squares. This is proved in [KW21, Proposition 14], but we recall the details
here since we use slightly different language. The fixed points of the Segre involution
are given by the ramification locus of [P1 : P2], namely where x1P2(u, v) − x2P1(u, v)
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has a multiple root in u and v. The ramification locus is given by the vanishing of the
discriminant Discu,v(x1P2(u, v)−x2P1(u, v)). This locus is defined over k(ℓ)(

√
α), where

α = Discx1,x2(Discu,v(x1P2(u, v)− x2P1(u, v))).

We conclude by computing Res(P1, P2) = 16 · α.

For n > 2, the determinant detAP1,...,Pn is not a resultant, which explains why [KW21]
does not generalize. However, it turns out that detAP1,...,Pn is always a product of
resultants. We had wondered if this were true after Pauli treated the case of lines on
quintic threefolds:

Example 2.3 (Quintic threefolds). For quintic threefolds, we need to consider the de-
terminant of

AP1,P2,P3 =


p4,1 0 p4,2 0 p4,3 0
p3,1 p4,1 p3,2 p4,2 p3,3 p4,3
p2,1 p3,1 p2,2 p2,3 p3,3 p3,3
p1,1 p2,1 p1,2 p2,2 p1,3 p2,3
p0,1 p1,1 p0,2 p1,2 p0,3 p1,3
0 p0,1 0 p0,2 0 p0,3

 .

Here, we have F = x1P1+x2P2+x3P3+R with Pi(u, v) = p4,iu
4v+ p3,iu

3v2+ p2,iu
2v3+

p1,iuv
4 + p0,iv

5. Now the image of the Gauß map

G : ℓ → P2
k(ℓ)

[u : v] 7→ [P1(u, v) : P2(u, v) : P3(u, v)]

is a rational plane quartic curve. A general rational plane quartic has three nodes
ν1, ν2, ν3 defined over the algebraic closure k. Over k(ℓ) we could have 1, 2 or 3 nodes,
in each case the sum of the degrees of the residue fields of the nodes over k(ℓ) equals 3.
That is,

∑
nodes ν [k(ν) : k(ℓ)] = 3.

Each node ν defines a degree 2 divisor Dν on ℓk(ν) as follows. Consider the pencil Hν
t of

lines in P2
k(ν) through ν. Then Hν

t ∩ G(ℓ) defines a pencil of degree 4 divisors Dν +Dν
t

on ℓk(ν).

By [Pau22, Lemma 3.1], the pencil Dν
t is base point free when ℓ is a simple (i.e. reduced)

line and thus defines a degree 2 map of the form [Qν
1 : Qν

2] : P1
k(ν) → P1

k(ν). The non-trivial
element of the Galois group of the double cover [Qν

1 : Qν
2] gives an involution on ℓk(ν),

which we again call the Segre involution. Geometrically, the Segre involution swaps the
pairs of points in the pencil Dν

t (see Figure 2a). The fixed points of the Segre involution
are defined over k(ν)(

√
αν) for some αν ∈ k(ν)×/(k(ν)×)2, which can be computed as

the resultant αν = Res(Qν
1, Q

ν
2) by the same argument as above for n = 2. The index of

this Segre involution is given by the norm

Nk(ν)/k(ℓ) αi = Nk(ν)/k(ℓ) Res(Q
ν
1, Q

ν
2).
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We want to identify the local index indℓ(σF ) = Trk(ℓ)/k⟨detAP1,P2,P3⟩ with the trace of
the product of Segre indices

Trk(ℓ)/k⟨
∏

nodes ν

Nk(ν)/k(ℓ) Res(Q
ν
1, Q

ν
2)⟩.

That is, we need to show that

⟨detAP1,P2,P3⟩ = ⟨
∏
ν

Nk(ν)/k(ℓ)Res(Q
ν
1, Q

ν
2)⟩

in GW(k(ℓ)).

In this example we assume that ν1, ν2, ν3 are all defined over k(ℓ). We can then use a
change of coordinates to assume that

ν1 = [1 : 0 : 0],

ν2 = [0 : 1 : 0],

ν3 = [0 : 0 : 1].

Under this assumption, the quartic polynomials Pi, Pj have two common zeros for i ̸= j,
and hence there exist quadratic polynomials Q1, Q2, Q3 such that

P1 = Q2Q3,

P2 = Q1Q3,

P3 = Q1Q2.

In this case, one can prove that

[Q1
1 : Q

1
2] = [Q2 : Q3],

[Q2
1 : Q

2
2] = [Q1 : Q3],

[Q3
1 : Q

3
2] = [Q1 : Q2]

and detAP1,P2,P3 =
∏

i<j Res(Qi, Qj), thereby proving that the local index is the product
of the Segre indices.

Our use of coordinate change to write ν1, ν2, ν3 in this simple form relies on the assump-
tion that these nodes are all defined over k(ℓ). This need not be the case — in general,
ν1, ν2, ν3 will be Galois conjugates over k. We can then use a coordinate change to again
express P1, P2, P3 as products of quadratic polynomials Q1, Q2, Q3, with these quadratics
being Galois conjugate. See [Pau22] for more details.

For n > 3, we can no longer use a projective change of coordinates to reduce to a
particular case as was done for quintic threefolds. This is the reason that [Pau22] does
not admit an obvious generalization to lines on hypersurfaces of greater dimension and
degree. A construction of Finashin and Kharlamov will allow us to sidestep this issue.
This construction uses what we call conic models, which we introduce in the next section.
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3. Conic models for the Gauß curve

Our goal in this section is to define conic models for Gauß curves. This construction
appears in [FK21, §6], and we will use it to show that the local index is the same as
the product of Segre indices. In particular, this construction allows us to see that the
determinant detAP1,··· ,Pn (see Equation 2.1) is always a product of resultants.

Remark 3.1. For the remainder of the article, we will assume n ≥ 3. Most of the
constructions from here on out only make sense under this assumption.

We start by recalling the definition of the Segre index in general, following the same
notation used in Examples 2.2 and 2.3. This was already defined in the real case in
[FK21] and there are no major technical differences in passing to a general field. The
main tool we will need is a result attributed to Castelnuovo, which states that there are
finitely many (n − 3)-dimensional (2n − 4)-secants to a generic degree 2n − 2 rational
curve in Pn−1. This generalizes the fact that a general rational quartic plane curve has
three nodes. Segre involutions and their associated indices are constructed from these
finite sets of secants.

Finally, we will dive into conic models for Gauß curves: to each Gauß curve and its
Castelnuovo secants, we can associate a set of points B and a conic Q in P2

k(ℓ). We will
show that the local index and the Segre index can be computed purely in terms of a
conic model.

3.1. Secants and the Segre index. Recall our setting. Let X ⊂ Pn+1 be a generic
hypersurface of degree 2n− 1, and fix a line ℓ ⊆ X. Without loss of generality, we may
choose coordinates [u : v : x1 : . . . : xn] on Pn+1

k(ℓ) such that ℓ = {[u : v : x1 : . . . : xn] :

x1 = · · · = xn = 0} and X = V(F ) for

F = x1P1(u, v) + x2P2(u, v) + . . .+ xnPn(u, v) +R(u, v, x1, . . . , xn),

where P1, . . . , Pn ∈ k(ℓ)[u, v] are homogeneous polynomials of degree 2n − 2 and R ∈
(x1, . . . , xn)

2 ⊆ k(ℓ)[u, v, x1, . . . , xn] is also of degree 2n− 2.

Following [FK21], the Gauß map along ℓ is given by

G : P1
k(ℓ) → Pn−1

k(ℓ)

[u : v] 7→ [P1(u, v) : . . . : Pn(u, v)].
(3.1)

Definition 3.2. We call the image of ℓ under the Gauß map the Gauß curve associated
to ℓ. This is a rational curve

G(ℓ) ⊆ Pn−1

of degree 2n− 2.

We are interested in the (n− 3)-dimensional (2n− 4)-secants to the Gauß curve, i.e. the
(n− 3)-planes that meet the Gauß curve in 2n− 4 points (when counted with multiplic-
ity). Finashin–Kharlamov state that there are (geometrically)

(
n
2

)
such secants [FK21,

Proposition 4.3.3], which they refer to as the Castelnuovo count.
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Proposition 3.3 (Castelnuovo count). The number of (n − 3)-dimensional (2n − 4)-
secants (defined over k) to a generic rational curve C ⊂ Pn−1 of degree 2n− 2 is

(
n
2

)
.

Proof. Just as described in the proof of [FK21, Proposition 4.3.3 (2)], the number of se-
cants (when counted with multiplicity) is

(
n
2

)
, and these multiplicities are always positive.

This fact follows from the same argument present in [EH16, §12.4.4], where Eisenbud
and Harris apply Porteous’ formula to count the number of quadrisecant lines to rational
curves in P3 (i.e. the case n = 4). We explain how this argument goes in general.

Recall that the parameter space for dimension 0, degree 2n − 4 subschemes Γ ⊆ P1 is
given by Sym2n−4 P1 ∼= P2n−4. Consider the vector bundle E∗ → P2n−4 whose fibers are
given by

E∗
Γ = H0(OP1(2n− 2))/H0(IΓ(2n− 2)),

which is the space polynomials of degree 2n− 2 modulo the polynomials that vanish on
Γ. Note that the rank of E∗ is 2n− 1− 3 = 2n− 4.

The Gauß map G : ℓ → Pn−1 induces a map

H0(OPn−1(1)) ↪→ H0(OP1(2n− 2)),

given by simply sending xi to Pi (in the notation defined at the beginning of this sub-
section). Denoting by F the trivial rank n bundle over P2n−4 with fiber H0(OPn−1(1)),
we get a morphism of vector bundles

φ : F → E∗

by projecting to the quotient. The (2n− 4)-secants to C of dimension n− 3 correspond
to the locus of dimension 0, degree 2n − 4 subschemes Γ ⊆ C ⊆ Pn−1 whose projective
linear span has codimension 2. Given Γ ⊆ C ⊆ Pn−1, by the definition of the φ, the
equations in the kernel of φΓ correspond to hyperplanes that contain Γ and, therefore,
the linear subspace determined by the equations in kerφ is the projective span of Γ.
To have a projective span of codimension two, we need kerφ to have dimension 2 and
therefore rankφ = n− 2. It thus suffices to consider the locus Mn−2(φ) ⊆ P2n−4 where
the map has rank n− 2.

The expected codimension of Mm(φ) is (e − m)(f − m), where e and f are the ranks
of E∗ and F respectively. This gives us that the expected dimension of Mm(φ) is 2n −
4 − (2n − 4 −m)(n −m). Notice that plugging in m = n − 2 gives us dimension zero,
which means that generic rational curves of degree 2n− 2 in Pn−1 have a finite number
of (n− 3)-dimensional (2n− 4)-secants. From this formula, one can also verify that the
locus, where φ has rank less than n− 2, has expected negative dimension.

It remains to calculate the class [Mn−2(φ)] in the Chow ring of P2n−4. This is done by
Porteous’ formula [EH16, Theorem 12.4]. In the present context, Porteous’ formula and
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the computation of the total Chern class c(E∗) [EH16, Theorem 10.16] give us

[Mn−2(φ)] =

∣∣∣∣cn−2(E∗) cn−1(E∗)
cn−3(E∗) cn−2(E∗)

∣∣∣∣
=

∣∣∣∣ (n2)ζn−2
(
n+1
2

)
ζn−1(

n−1
2

)
ζn−3

(
n
2

)
ζn−2

∣∣∣∣
=

((
n

2

)2

−
(
n+ 1

2

)(
n− 1

2

))
ζ2n−4,

where ζ is the hyperplane class. We now conclude by noting that
(
n
2

)2−(n+1
2

)(
n−1
2

)
=
(
n
2

)
.

For our purposes, we also need each of these secants to have multiplicity 1 for a generic
C. Again, the proof proceeds exactly as for [FK21, Proposition 4.3.3 (3)] — one uses
Kleiman’s transversality theorem [Kle74] to show that over k, there is a dense open subset
of the space of degree 2n − 2 rational curves in Pn−1 on which all secants have multi-
plicity 1, since these multiplicities arise as an intersection multiplicity in an appropriate
parameter space. □

Example 3.4. When n = 3, we recover the three nodes on a rational plane quartic as
secants (see Figure 2a). Indeed, we get three 2-secants of dimension zero. These are
points that intersect the curve twice, i.e. are double points. When n = 4, we get six
4-secants of dimension 1 to a rational sextic in P3 (see Figure 2b).

We now define the Segre involution associated to a secant of the Gauß curve. Let S be
one of the (2n− 4)-secants to G(ℓ), and let k(S)/k(ℓ) be its field of definition. Then S
defines a degree 2n−4 divisor DS on ℓk(S), as S∩G(ℓ) consists of 2n−4 geometric points
(when counted with multiplicity). Now consider the pencil Ht of hyperplanes in Pn−1

k(S)

containing S. For each t, we get a degree 2n− 2 divisor on ℓk(S), as Ht ∩G(ℓ) consists of
2n− 2 geometric points (when counted with multiplicity) by Bézout’s theorem. We can
write this divisor as DS +DS

t . Note that DS
t is base point free and therefore defines a

degree 2 map [QS
1 : QS

2 ] : P1
k(S) → P1

k(S).

Definition 3.5. We define the Segre involution associated to a secant S of G(ℓ) as the
involution

iS : ℓk(S) → ℓk(S)

given by the non-trivial element of the Galois group of the double covering [QS
1 : QS

2 ].

The fixed points of the Segre involution iS are defined over k(S)(
√
αS) for some αS ∈

k(S)×/(k(S)×)2. In fact, we may take αS = Res(QS
1 , Q

S
2 ) by the argument given in

Example 2.2.

Definition 3.6. The Segre index of ℓ is

seg(X, ℓ) := Trk(ℓ)/k⟨
∏
S

Nk(S)/k(ℓ) αS⟩ ∈ GW(k)
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where the product goes over all the secants S. As in Example 2.3, each secant S is a
representative from its orbit of Galois conjugates whose contributions to seg(X, ℓ) are
encoded in the norm Nk(S)/k(ℓ) αS.

Example 3.7. In case k = k(ℓ) = R the Segre index seg(X, ℓ) agrees with the Segre in-
dex from the introduction defined by Finashishin–Kharlamov (you just have to stick
brackets around it). Indeed, each secant defined over C will contribute the factor
NC/R(1) = 1 and each secant S defined over R will contribute the factor αS.

Remark 3.8. As mentioned in the introduction, we will generally conflate the Segre
involution iS : ℓk(S) → ℓk(S), which is an involution of a projective line P1

k(S), with an
involution of the Gauß curve G(ℓ)k(S). In order to justify this conflation, we need to verify
that iS induces an involution on G(ℓ)k(S) whose fixed points are defined over k(S)(

√
αS).

To define an involution on G(ℓ)k(S), we first note that G(ℓ)k(S) = G(ℓk(S)). We may
therefore define

i′S : G(ℓ)k(S) → G(ℓ)k(S)
G(x) 7→ G(iS(x)).

That is, i′S = G ◦ iS. Note that iS(x) = x only if x and iS(x) have the same image under
the Gauß map — this is by definition of the involution iS. It follows that the fixed points
of i′S are given by {G(x) : iS(x) = x}. Finally, since G : ℓk(S) → G(ℓ)k(S) is a birational
map, we have an isomorphism from the field of definition of the fixed locus of iS to the
field of definition of the fixed locus of i′S, as desired.

3.2. Conic models. Our next goal is to recap Finashin and Kharlamov’s construction
of conic models for the Gauß curve [FK21, Section 6.3]. These consist of a plane conic
Q, together with a collection a zero dimensional subscheme B ⊆ P2 of degree

(
n
2

)
, such

that the Gauß curve coincides with the strict transform of Q in the blowup BlB P2.

One place where we deviate from Finashin–Kharlamov is that we require our plane conic
Q to come equipped with a parameterization, which we need in order to define an index
associated to the conic. Such a parameterization comes from stereographic projection
from a k-rational point on Q, but over non-closed fields there are conics defined over k
with no k-points. Working with the space of parameterized conics allows us to sidestep
this issue.

Remark 3.9. Technically, Finashin and Kharlamov implicitly assume that their conics
are parameterized, as they require their conics to have real points in order to describe
the associated conic index. However, their comment on this construction is brief enough
that they do not justify why one can always take a parameterized conic model. We will
give such a justification in the course of this section.

Let B be a zero dimensional subscheme of P2 of degree
(
n
2

)
of
(
n
2

)
(geometric) points in

P2 in general position, and let Q ⊆ P2 be a conic that does not pass through any of the



QUADRATIC SEGRE INDICES 17

points in B. Curves of degree n− 1 through B form a linear system LB of dimension

dimLB =

(
3 + n− 1− 1

n− 1

)
−
(
n

2

)
− 1

=

(
n+ 1

2

)
−
(
n

2

)
− 1

= n− 1.

Therefore, after choosing a basis β for this system, we obtain a rational map

gB,β : P2 99K Pn−1

whose indeterminacy locus is B. Of course, such a map depends on the choice of a basis.
Finally, the curve C := gB,β(Q) ⊂ Pn−1 is a rational curve of degree 2n− 2.

We can summarize the construction gB,β(Q) in terms of a rational map to the space of
rational curves of degree 2n − 2. Let Mor(P1,PN)d denote the space of rational curves
of degree d in PN . Let Q := Mor(P1,P2)2 denote the space of parameterized conics in
P2, and let Confm(P2) denote the configuration space of m points in P2. The space of
bases for a linear system of dimension n − 1 is a projective space of dimension n2 − 1.
Altogether, Finashin–Kharlamov’s construction is a rational map of the form

FK : Conf(n2)
(P2)× Pn2−1 ×Q 99K Mor(P1,Pn−1)2n−2

(B, β,Q) 7→ gB,β(Q).

Definition 3.10. A conic model for a rational curve C ∈ Mor(P1,Pn−1)2n−2 is an element
of the fiber FK−1(C). We say that C has a conic model if the fiber FK−1(C) is not empty.

As described in [FK21, p. 4077], there is a close relationship between a rational curve
with its secants and a conic model for the curve. We now outline this relationship, which
is summarized in Table 1.

As previously described, our Gauß curve G(ℓ) is the image of the plane conic Q in a
chosen conic model (B, β,Q). (The fact that a generic Gauß curve has a conic model
will be proved in Lemma 3.11.) Let b ∈ B(k) with residue field k(b). By Cramer’s
theorem on algebraic curves, there exists a unique plane curve Zb of degree n−2 passing
through all points of B(k)−{b}. The field of definition of Zb is k(b). Indeed, B(k)−{b}
is defined over k(b), since both b and B are defined over k(b). Thus B(k) − {b} and
hence Zb are fixed under Gal(k(b))-action, giving us that Zb is defined over k(b).

Bézout’s theorem implies that Zb and Q intersect in 2n − 4 points. Consequently, the
projective linear span of gB,β(Zb) forms an (n− 3)-dimensional (2n− 4)-secant to G(ℓ).
By verifying that distinct points b, b′ ∈ B(k) correspond to distinct (n − 3)-planes, we
conclude that all

(
n
2

)
such secants to G(ℓ) arise in this manner.

In particular, this construction establishes a bijection between B(k) and the set of (n−3)-
dimensional geometric (2n − 4)-secants to G(ℓ). This bijection maps Galois conjugate
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points in B(k) to Galois conjugate secants, while preserving the associated Galois action.
This implies that a point b ∈ B corresponds to a secant S satisfying k(b) ∼= k(S).

Next, take the pencil Hb
t of lines in P2 through a fixed b ∈ B. Then Hb

t ∪ Zb is a pencil
of degree n − 1 curves through B, each of which consists of a fixed component Zb and
a moving linear component. The projective linear span of gB,β(H

b
t ∪ Zb) is a pencil of

(n − 2)-dimensional hyperplanes in Pn−1, each of which contains the (2n − 4)-secant
corresponding to b. This pencil of (n− 2)-dimensional hyperplanes is used to construct
the Segre involution

iS : G(ℓ) → G(ℓ).
Pulling back iS under gB,β gives an involution

(3.2) µb : Q → Q.

Every involution on a conic can be obtained by intersecting the conic with a pencil of
lines through some point, known as the polar point, and swapping the pairs of points for
each line. One can check that µb is the involution given by the pencil of lines through b,
so that b is the polar point of this involution.

Gauß curves Conic models
G(ℓ) Q
Secant S b ∈ B
Hyperplanes containing S Lines through b
Segre involution iS Conic involution µb

Table 1. Dictionary for Gauß curves and their conic models

We will now show that a generic rational curve of degree 2n − 2 in Pn−1 has a conic
model, as claimed in [FK21, Section 6.3].

Lemma 3.11. Let C be a general rational curve of degree 2n − 2 in Pn−1. Then there
exists (B, β,Q) ∈ Conf(n2)

(P2)× Pn2−1 ×Q such that gB,β(Q) = C.

Proof. The space Mor(P1,PN)d is given by U/PGL2, where U ⊂ P(H0(P1,O(d))⊕N+1).
One can prove that Mor(P1,PN)d is an irreducible scheme of dimension (d+1)(N+1)−4.
To compute this dimension, note that the space of homogeneous degree d polynomials
in 2 variables is d+1, and we need N +1 such polynomials to define a morphism to PN .
We then subtract 1 to account for projectivization, and we subtract 3 to account for the
action of Aut(P1) ∼= PGL2. So for N = n − 1 and d = 2n − 2, the space Mor(P1,PN)d
has dimension 2n2 − n− 4. Note that dimQ = 5 and dimConf(n2)

(P2) = 2
(
n
2

)
= n2 − n.

The source and target of FK are both geometrically irreducible (as products of ge-
ometrically irreducible schemes). As previously computed, the source has dimension
(n2 − n) + 5 + (n2 − 1) = 2n2 − n + 4, while the target has dimension 2n2 − n− 4. To
prove the desired claim, it remains to show that generic fibers of FK have dimension

(2n2 − n+ 4)− (2n2 − n− 4) = 8.
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To this end, we will show that gB1,β1(Q1) = gB2,Mβ2(Q2) for some change of basis matrix
M if and only if there exists a projective transformation of P2 transforming (B1, Q1) to
(B2, Q2). From this, it will follow that generic fibers of FK have dimension dimAut(P2) =
dimPGL3 = 8, as desired.

To begin, assume that (B1, Q1) and (B2, Q2) are projectively equivalent. The curves
gBj ,βj

(Qj) are obtained by embedding the strict transform of Qj on the blowup BlBj
(P2),

and an automorphism taking (B1, Q1) to (B2, Q2) gives an isomorphism of the strict
transforms of Qj on BlBj

(Qj). Now the embeddings gBj ,βj
(Qj) are isomorphic but need

not be equal (as elements of Mor(P1,Pn−1)2n−1), but they will differ by a projective
change of coordinates on Pn−1. Let M ∈ PGLn represent this change of coordinates.
Then gB1,β1(Q1) = gB2,Mβ2(Q2), as desired.

We now explain why gB1,β1(Q1) = gB2,β2(Q2) implies that (B1, Q1) and (B2, Q2) are
projectively equivalent. As previously described, there is a natural bijection between
Bj and the set of (n − 3)-dimensional (2n − 4)-secants to the curve gBj ,βj

(Qj). Each
Segre involution iS on this curve determines an involution µb : Qj → Qj with polar
point b ∈ Bj. In particular, we can recover the set Bj from the curve gBj ,βj

(Qj) via the
involutions iS — assuming we already know Qj. The polar point of an involution on Qj

is determined up to projective change of coordinates, so the ambiguity in reconstructing
(Bj, Qj) from gBj ,βj

(Qj) is precisely Aut(P2) ∼= PGL3. In other words, if gB1,β1(Q1) =
gB2,β2(Q2), then there exists a projective transformation taking (B1, Q1) to (B2, Q2), as
desired. □

Remark 3.12. Lemma 3.11 states that a general rational curve of degree 2n−2 in Pn−1

has a conic model. For n = 4, this description is explicitly related to Dye’s result on
sextic space curves and double sixes of cubic surfaces [Dye97], as mentioned in Footnote 1.
Indeed, blowing up

(
4
2

)
points in general position in P2 yields a cubic surface. The strict

transforms of the six conics through five of these points form one half of a double six.
Now take any conic in P2 that does not meet any of the six points at the center of our
blowup. The strict transform of this conic is a sextic curve on the cubic surface, and
it meets each of the aforementioned lines in four points. Dye proves that every smooth
rational space sextic and its six quadrisecants can be constructed in this manner.

Using the above, one can explicitly construct rational space sextics and their quadrise-
cants. All that remains is to give a parameterization

P2 99K P3

of the cubic surface obtained by blowing up six points. The classical method for con-
structing such a parameterization is to pick a basis f1, f2, f3, f4 of the space of cubic
forms interpolating the six points in P2. The resulting cubic surface is then the Zariski
closure of the map

[f1 : . . . : f4] : P2 99K P3.

For example, the sextic in Figure 2b is the image of the conic V(x2

4
+ y2

9
− z2) on a

Clebsch cubic surface, which is obtained by blowing up the points

B = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1], [1 : 1 : 1], [1 : 2 : 3], [2 : −1 : 1]}.
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For our basis of cubic forms through these points, we chose

f1 =
1

7
(3x2z + xz2 + x2y − 5xy2),

f2 =
1

5
(2x2z + xyz − 3xy2),

f3 =
1

2
(−5xz2 + 2yz2 + 3x2z),

f4 =
1

2
(x2z − 3xz2 + 2y2z),

which were adapted from [CSD07, Example 7]. The quadrisecant depicted in Figure 2b
is the image of the conic through B − {[1 : 2 : 3]}.

Not only does every general rational curve admit a conic model, but we can further take
our conic and locus of points to have the same field of definition as the rational curve.

Corollary 3.13. Let C be a general rational curve of degree 2n − 2 in Pn−1. If C is
defined over a field K/k, then there exists a conic model (B, β,Q) of C such that B and
Q are defined over K.

Proof. Let q : P1 → P2 be any parameterized conic defined over K, and denote Q :=
q(P1). We will show that there exist (B, β) ∈ Conf(n2)

(P2)× Pn2−1 (with B defined over
K) such that gB,β(Q) = C, which will give the desired claim.

Each secant S to C determines a Segre involution iS : P1
k(S) → P1

k(S), so q ◦ iS is an
involution of Qk(S). Let b(S) denote the polar point of q ◦ iS. Let B denote the scheme
whose underlying set is {b(S) : S secant to C}. Note that B is defined over K. Indeed,
all of the schemes involved are geometrically reduced closed subschemes of projective
space, so they are defined over K if and only if they are fixed under Gal(Ksep/K)-action
(see e.g. [McK25, Proposition 2.4]). The curve C is defined over K, so it and its scheme
of secants are fixed under all Gal(Ksep/K)-actions. Since we have assumed that Q is
defined over K, this conic is also fixed under Gal(Ksep/K)-actions, so the set of polar
points of the form b(S) must also be Gal(Ksep/K)-fixed.

It remains to show that there exists β such that gB,β(Q) = C. Let (B′, β′, Q′) be a conic
model for C. Since Q′ and C are geometrically birational, they are birational after some
extension K ′ of K. Thus K ′ is a field of definition of Q′. Since Q′ is a degree 2 curve
and the characteristic of K is not 2, we know that K ′/K is a separable extension. We
therefore have a projective transformation M (over K ′) such that MQ′ = Q. The set
of involutions induced by MB′ and B must be the same, as these are both induced by
the involutions iS coming from C and its secants. In particular, the polar points of the
involutions induced by MB′ and B must agree, so MB′ = B. It follows that (B,Mβ′, Q)
is a conic model for C. □

Definition 3.14. Given a line ℓ ⊆ X, we will say that a conic model (B, β,Q) of G(ℓ)
is rational if both B and Q are defined over k(ℓ). Corollary 3.13 states that a rational
conic model always exists.
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3.3. Two equivalent formulas for the Segre index. We have already defined the
Segre index of a line ℓ in terms of the fixed points of the Segre involutions associated to
the secants to the Gauß curve G(ℓ). Using the dictionary between the Gauß curve and
its conic models, we can define an alternative index associated to ℓ.

Definition 3.15. Let (B, β,Q) be a rational conic model for a Gauß curve G(ℓ). For
each b ∈ B, let k(b) ⊃ k(ℓ) be the field of definition of b ∈ B and let αb ∈ k(b)×/(k(b)×)2

be such that the fixed points of the involution µb : Q → Q (see Equation 3.2) are defined
over k(

√
αb). The conic index of ℓ is

con(X, ℓ) := Trk(ℓ)/k⟨
∏
b∈B

Nk(b)/k(ℓ) αb⟩ ∈ GW(k).

Note that the conic index does not depend on our choice of conic model for G(ℓ). Indeed,
any two such choices differ by a projective change of coordinates over k(ℓ) (as described
in the proof of Lemma 3.11 and Corollary 3.13), and such a change of coordinates does
not change the field of definition of the fixed points of an involution of the conic.

We will conclude this section by showing that the Segre index and the conic index are
equal.

Proposition 3.16. Given a line ℓ on a degree 2n− 1 hypersurface X ⊆ Pn+1, we have
seg(X, ℓ) = con(X, ℓ).

Proof. Fix a rational conic model (B, β,Q) for G(ℓ). We have seen that if S is the secant
corresponding to b ∈ B, then gB,β induces a field isomorphism ϕ : k(S) → k(b) that fixes
k(ℓ). Furthermore, we have ϕ(αS) = αb up to squares simply because the involution in
the conic model is mapped to the involution of the Gauß curve by gB,β. □

Example 3.17 (The conic index for lines on a quintic threefold). We look at the case
n = 3 (the quintic threefold case). In this case the map gB,β : P2 99K Pn−1 = P2 is
a birational map and therefore a Cremona transformation. Recall that the Gauß map
G : P1

k(ℓ) → P2
k(ℓ) in this case is a general degree 4 parametrized plane curve and that it

has three nodes. These nodes are exactly the
(
n
2

)
= 3 zero dimensional 2n − 4-secants.

Assume for simplicity that the nodes are all defined over k(ℓ) and lie in general position
(just like we did in Example 2.3). Then, after a coordinate change we can assume that
the nodes are the points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. The Cremona transformation
with base locus these three special points (that is, the standard Cremona transformation)
is given by Cr := [x2x3 : x1x3 : x1x2] : P2 99K P2. Now Cr ◦ G : P1

k(ℓ) → P2
k(ℓ) has degree

2, so we have a parametrized conic Q := Cr ◦ G. Let B = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}
and gB,β = Cr. Then (B, β,Q) is a conic model for G since Cr is a birational involution
with base locus B.

We compute the conic index in this setup. To do so, we first have to write down a
parametrization of Q = Cr ◦ G. Recall from Example 2.3 that in this case, the Gauß
map G is given by G = [Q2Q3 : Q1Q3 : Q1Q2] and thus Cr ◦ G = [Q1 : Q2 : Q3]. For
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the polar point [1 : 0 : 0] ∈ B the pencil of degree two divisors on P1
k(ℓ) is given by

{t0Q2+ t1Q3 = 0} ⊂ P1
k(ℓ) and thus the fixed points of the associated involution live over

k(ℓ)(
√
α) with α = Res(Q2, Q3) by the same argument as in Example 2.2. Similarly,

the fixed points of the involutions for the other two points in B live over k(ℓ)(
√
α) with

α = Res(Q1, Q3) respectively α = Res(Q1, Q2). Thus the conic index equals

Res(Q2, Q3) Res(Q1, Q3) Res(Q1, Q2),

which agrees with the Segre index and local index by Example 2.3.

4. The local index is the conic index

We are almost ready to prove Theorem 1.2, which states that the local index of a line on
a degree 2n− 1 hypersurface in Pn+1 is given by the Segre index. By Proposition 3.16,
it suffices to show that the local index is equal to the conic index, which is the following
theorem.

Theorem 4.1. If ℓ is a line on a degree 2n − 1 hypersurface X = V(F ) in Pn+1, then
indℓ σF = con(X, ℓ).

Proof. For any X and ℓ, there exists a rational conic model (B, β,Q) of G(ℓ) according
to Lemma 3.11 and Corollary 3.13. We will prove that con(X, ℓ) can be expressed as
a product of resultants in terms of Q and B, denoted by R(B,Q) (see Equation 4.1).
Using the coordinate functions of our rational curve G(ℓ) = gB,β(Q), we will construct a
matrix whose determinant only depends on B and Q. We will denote the determinant
of this matrix by A(B,Q) (Equation 4.6).

So far, R(B,Q) and A(B,Q) are algebraic maps on Conf(n2)
(P2) × Q. By applying a

projective change of coordinates if necessary, we may assume that B ⊆ P2 does not
intersect the divisor at infinity, so that R(B,Q) and A(B,Q) are algebraic maps on
Conf(n2)

(A2)×Q. As Q is the space of parameterized conics, we have a parameterization
[Q0 : Q1 : Q2] of Q. The space of coefficients of a homogeneous degree 2 polynomial in
3 variables is A3, so we may regard (Q0, Q1, Q2) as a point in A9. As

Conf(n2)
(A2) ⊆ A2(n2),

we may treat R(B,Q) and A(B,Q) as algebraic maps on An(n−1) × A9. In order for
this change of domain to be well-defined, it suffices to prove that the maps R(B,Q) and
A(B,Q) do not depend (up to squares) on:

(i) the choice of coordinates on P2,

(ii) the choice of parameterization of Q, and

(iii) the choice of representative of the projective equivalence class [Q0 : Q1 : Q2].
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This will be proved in Propositions 4.2 and 4.4. We will then show that

R(B,Q) =
∏
b∈B

Nk(b)/k(ℓ) αb,

A(B,Q) = detAP1,...,Pn (up to squares),

where we are using the notation of Definition 3.15 and Equation 2.1, respectively. If we
can prove that R(B,Q) = A(B,Q) up to squares whenever A(B,Q) ̸= 0, then the claim
that

con(X, ℓ) = indℓ σF

will follow from Definition 3.15 and Equation 2.2.

To prove that R(B,Q) = A(B,Q) up to squares whenever A(B,Q) ̸= 0, we will show:

(i) there exists a regular map det VB such that if det VB ̸= 0, then A(B,Q) ̸= 0
(Lemma 4.5),

(ii) (det VB)
2n · R(B,Q) and A(B,Q) have the same zero locus (Proposition 4.6),

(iii) there exist infinitely many (B,Q) (over k(ℓ)) such that (det VB)
2n · R(B,Q) =

A(B,Q) ̸= 0 (Proposition 4.8), and

(iv) there exists c ∈ k(ℓ) and d ∈ Z such that A(B,Q) = c · (det VB)d · R(B,Q)
(Proposition 4.11).

We then conclude that A(B,Q) = (det VB)
2n · R(B,Q) in Corollary 4.12. □

Proof of Theorem 1.2. By Proposition 3.16, the Segre index equals the conic index. By
Theorem 4.1, the conic index equals the local degree. This means that the local index
equals the Segre index, as claimed. □

The rest of the paper is devoted to proving the propositions and lemmas referenced in
the proof of Theorem 4.1. For the remainder of this section fix a rational conic model
(B, β,Q) of G(ℓ). Let [Z : X : Y ] be coordinates on P2 such that B ⊆ {Z ̸= 0}.
We denote the affine coordinates on {Z ̸= 0} by (x, y). Let [Q0 : Q1 : Q2] be a
parameterization of Q (which exists, as Q is a parameterized conic).

4.1. Defining R(B,Q). Recall that

con(X, ℓ) = Trk(ℓ)/k⟨
∏
b∈B

Nk(b)/k(ℓ) αb⟩.

Our goal is to express
∏

b∈B Nk(b)/k(ℓ) αb in terms of B and Q, where αb ∈ k× is such that
the fixed points of the involution µb are defined over k(b)(

√
αb). Let b = (bx, by) ∈ A2 =

{Z ̸= 0} ⊂ P2. We have

αb = Disct0,t1
(
Discu,v(t0(Q1(u, v)− bxQ0(u, v))− t1(Q2(u, v)− byQ0(u, v)))

)
,

which simplifies to
Res(Q1 − bxQ0, Q2 − byQ0)
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up to squares. We can now define R(B,Q) as

(4.1) R(B,Q) =
∏

b∈B(k(ℓ))

Res(Q1 − bxQ0, Q2 − byQ0).

Note that we are taking the product of resultants over the entire geometric locus B(k(ℓ)),
which is equal to taking the product of norms of resultants over the locus of closed points
B.

Proposition 4.2. As an element of k(ℓ)×/(k(ℓ)×)2, the value R(B,Q) does not depend
on:

(i) the choice of coordinates on P2,

(ii) the choice of parameterization of Q, and

(iii) the choice of representative of the projective equivalence class [Q0 : Q1 : Q2].

Proof. All three of these statements can be verified computationally, as we now explain.

(i) Any change of coordinates on P2 can be represented by (the projective class of) some
(aij) = A ∈ GL3(k(ℓ)). One can compute directly (with your favorite computer
algebra system) that after such a coordinate change, we get

(4.2) (a11 + a12bx + a13by)
2 · (detA)2 · Res(Q2 − bxQ1, Q3 − byQ1),

which differs from Res(Q2 − bxQ1, Q3 − byQ1) by a square. Note that even if
(bx, by) is not defined over k(ℓ), the value R(B,Q) is a product over all b ∈ B(k).
Our assumption that B is defined over k(ℓ) implies that the Galois conjugates of
Equation 4.2 will also by factors in this product, so that R(B,Q) will only change
by a square in k(ℓ)× after our change of coordinates A.

(ii) Choosing a different parametrization of Q is simply precomposing with an auto-
morphism of P1. It suffices to show that a resultant Res(A(z), B(z)) changes by a
square after Möbius transformations when degA = degB = 2. Applying Möbius
transformations to A and B in this case is equivalent to taking new polynomials

A′(z) = (cz + d)2A

(
az + b

cz + d

)
, B′(z) = (cz + d)2A

(
az + b

cz + d

)
.

Classical properties of resultants imply that

• Res(A(z + a), B(z + b)) = Res(A(z), B(z)),

• Res(A(az), B(az)) = adegA·degB Res(A(z), B(z)) = a4Res(A,B), and

• Res(zdegAA(1/z), zdegBB(1/z)) = (−1)degA·degB Res(A(z), B(z)) = Res(A,B).

Since Möbius transformations are compositions of translations, invertions and scalar
multiplication (which are invariant up to squares), we get the result. In particular,
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by computing directly, we can see that

Res(A′, B′) = det

(
a b
c d

)4

Res(A,B).

(iii) For a different choice of projective class, we have Q′
i = λQi for some λ ∈ k(ℓ)×.

Again, it suffices to see that Res(λA, λB) = Res(A,B) up to squares. Indeed, we
are simply multiplying the Sylvester matrix by λ and therefore

Res(λA, λB) = λdegA+degB Res(A,B).

In our case this implies that the difference will given by a factor λ4, which is a
square. □

Note that the product defining R(B,Q) runs over the set of geometric points of B. Each
closed point b ∈ B consists of a Galois orbit of geometric points, and the product over
such an orbit gives the field norm Nk(b)/k(ℓ). In particular, we have

R(B,Q) =
∏
b∈B

Nk(b)/k(ℓ) αb.

4.2. Defining A(B,Q). The definition of the regular function A(B,Q) is more involved.
The strategy is to construct a basis β′ in terms of (B,Q). This will allow us to construct
a rational curve

gB,β′ ◦ [Q0 : Q1 : Q2] : P1 → Pn.

We will then define the regular function A(B,Q) as the determinant of the matrix
AP1,...,Pn (Equation 2.1), where P1, . . . , Pn are the coordinate functions of gB,β′ ◦ [Q0 :
Q1 : Q2].

In general, β′ need not be the basis coming from our conic model (B, β,Q). However,
gB,β ◦ Q and gB,β′ ◦ Q will be projectively equivalent curves in Pn−1, and we will prove
that the local index of a curve is preserved under projective equivalence (Lemma 4.3).

We will now describe how to construct our basis β′. Let B(k) = {b1, . . . , bm}, where
m =

(
n
2

)
. In our chosen affine patch, write bi = (bi,x, bi,y). Consider the following

interpolation matrix:

(4.3) VB =


1 b1,x b1,y b21,x b1,xb1,y · · · bn−2

1,y

1 b2,x b2,y b22,x b2,xb2,y · · · bn−2
2,y

...
...

...
...

...
. . .

...
1 bm,x bm,y b2m,x bm,xbm,y · · · bn−2

m,y

 .

Note that VB is a square m×m matrix, since the number of monomials in two variables
of degree at most n− 2 in two variables is simply

∑n−1
i=1 i =

(
n
2

)
. We can think of VB as a

matrix in the space of polynomials in two variables of degree at most n− 2. A solution
of the system VBf = w is a polynomial f for which f(bi,x, bi,y) = wi for all bi ∈ B. If
det VB = 0, then there is a curve of degree n− 2 through all points of B. In this sense,
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VB is a generalization of the Vandermonde matrix (as is also the case for more general
interpolation matrices).

In order to get the linear system LB of curves of degree n− 1 through the points B, we
need to add the following n columns to VB:

(4.4) RB =


bn−1
1,x bn−2

1,x b1,y · · · bn−1
1,y

bn−1
2,x bn−2

2,x b2,y · · · bn−1
2,y

...
...

. . .
...

bn−1
m,x bn−2

m,x bm,y · · · bn−1
m,y

 .

Appending RB to VB yields the m× (m+ n)-matrix

LB = [VB | RB] .

By construction, elements of the kernel of LB are exactly the elements of the linear
system LB. Our next goal is to construct β′ as a particular basis of ker LB. To begin,
let V∗B be the adjugate of VB and define a block matrix

(4.5) KB :=

(
−V∗B · RB
det VB · In

)
,

where In denotes the n × n identity matrix. Note that LB · KB = 0. If det VB ̸= 0, the
columns of KB are linearly independent, in which case the columns of KB form a basis
for ker LB. Let β′ be such a basis.

Finally, let Q be the (2n+ 1)× (m+ n) matrix representing the linear map

k[X, Y, Z](n−1) → k[u, v](2n−2)

f(x, y, z) 7→ f(Q0, Q1, Q2).

Then Q · KB is a matrix whose columns give the coefficients of the n coordinate polyno-
mials of the parameterized curve C = gB,β′(Q) ⊆ Pn−1. Denote these polynomials by
P ′
1, . . . , P

′
n, and let

(4.6) A(B,Q) := detAP ′
1,...,P

′
n
,

where AP ′
1,...,P

′
n

is the matrix given in Equation 2.1.

Note that if det VB = 0, then β′ is not necessarily a basis. However, we have det VB ̸= 0
for a general hypersurface in Pn. Indeed, if det VB = 0, then there exists a degree
n − 2 curve passing through B. The projective span of this curve is a (2n − 4)-secant
of dimension n − 4 to our hypersurface. As the codimension of this secant is 2, we
have infinitely many (2n− 4)-secants of codimension 1, which does not occur for general
hypersurfaces of degree 2n− 1 in Pn.

Nevertheless, the matrix Q·KB can still be computed even when det VB = 0 and, therefore,
the map A(B,Q) can still be defined in this case. In fact, we will prove in Lemma 4.5
that A(B,Q) = 0 whenever det VB = 0.
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As previously mentioned, we need to verify that A(B,Q) and the determinant of the
local index matrix of our Gauß curve G(ℓ) agree up to squares. This follows from the
fact that they differ by a projective change of coordinates:

Lemma 4.3. Let (B, β,Q) be a rational conic model of a Gauß curve G(ℓ). If β′ is
another basis of the linear system of degree 2n− 1 curves through B, then the coordinate
polynomials P1, . . . , Pn of G(ℓ) and P ′

1, . . . , P
′
n of gB,β′ ◦ Q differ by a projective change

of coordinates, and
detAP1,...,Pn = detAP ′

1,...,P
′
n

up to squares.

Proof. Let M = (mij) ∈ GLn(k(ℓ)) be a matrix such that β = M · β′. We then have
βi =

∑n
j=1mijβ

′
j, and hence composing with our conic Q gives us Pi =

∑n
j=1 mijP

′
j . In

particular, the class of M in PGLn(k(ℓ)) gives us a projective equivalence from [P1 : . . . :
Pn] to [P ′

1 : . . . : P
′
n]. Now let

M̃ =



m11 0 m21 0 · · · mn1 0
0 m11 0 m21 · · · 0 mn1

m12 0 m22 0 · · · mn2 0
0 m12 0 m22 · · · 0 mn2
...

...
...

...
. . .

...
...

m1n 0 m2n 0 · · · mnn 0
0 m1n 0 m2n · · · 0 mnn


.

(In other words, M̃ = M ⊗ I2 is the Kronecker product of M and the 2 × 2 identity
matrix.) Note that AP1,...,Pn = AP ′

1,...,P
′
n
· M̃ . Moreover, we have det M̃ = detM2, so it

follows that detAP1,...,Pn = detAP ′
1,...,P

′
n

up to squares. □

Finally, we need to justify that A(B,Q) does not depend on the various choices related
to picking representatives of B and Q.

Proposition 4.4. As an element of k(ℓ)×/(k(ℓ)×)2, the value A(B,Q) does not depend
on:

(i) the choice of coordinates on P2,

(ii) the choice of parameterization of Q, and

(iii) the choice of representative of the projective equivalence class [Q0 : Q1 : Q2].

Proof. As with Proposition 4.2, this boils down to some computations.

(i) Let φ : P2 → P2 be a change of coordinates, and let B′ = φ(B). Then φ induces a
map φ̃ : LB → LB′ of linear systems given by C 7→ C ◦ φ−1. Pick β be a basis for
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LB. We then obtain a basis β′ for LB′ given by β′
i = φ̃(βi) for each βi ∈ B (recall

from Lemma 4.3 that the choice of basis does not matter). Now

gB′,β′(φ(Q)) = [β′
1 ◦ φ(Q) : . . . : β′

n ◦ φ(Q)]

= [β1 ◦ φ−1 ◦ φ(Q) : . . . : βn ◦ φ−1 ◦ φ(Q)]

= [β1(Q) : . . . : βn(Q)]

= gB,β(Q).

(ii) Let [Q0 : Q1 : Q2] be a parameterization of Q, and let φ : P1 → P1 be a Möbius
transformation. Then the coordinate polynomials of gB,β(Q) and gB,β(Q◦φ) satisfy

{[P ′
1 : . . . : P

′
n]} = {[P ′

1 ◦ φ : . . . : P ′
n ◦ φ]},

and hence the coefficient matrices AP ′
1,...,P

′
n

and AP ′
1◦φ,...,P ′

n◦φ differ by M⊗I2, where
M is some invertible n × n matrix. It follows that the determinants of these two
matrices differ by detM2 (see the proof of Lemma 4.3), which is a square.

(iii) If λ ∈ k(ℓ)×, then changing (Q0, Q1, Q2) to (λQ0, λQ1, λQ2) changes the matrix Q by
scaling each column by λn−1. As a result, the polynomials P ′

1, . . . , P
′
n (whose coeffi-

cients are given by the columns of Q·KB) are sent to polynomials λn−1P ′
1, . . . , λ

n−1P ′
n.

Since AP ′
1,...,P

′
n

has rank 2n, it follows that

detAλn−1P ′
1,...,λ

n−1P ′
n
= λ2n(n−1) · detAP ′

1,...,P
′
n
,

so these two determinants differ by a square. □

4.3. Proving A(B,Q) = R(B,Q) up to squares. We have now defined our regular
maps A(B,Q) and R(B,Q) that compute the conic index and local index, respectively.
The final step is to show that these two regular maps agree up to squares. Our first goal
to this end is to show that A(B,Q) and (det VB)

2n · R(B,Q) have the same zero locus.

Lemma 4.5. If det VB = 0, then A(B,Q) = 0.

Proof. If det VB = 0, then the bottom n rows of KB are 0. In the polynomials corre-
sponding to the columns of KB, this means that the coefficients of all monomials that do
not contain z are 0. (Recall that here, [x : y : z] are our projective coordinates for P2,
and the columns of KB give the coefficients of corresponding plane curves.) Hence the
n polynomials P ′

1, . . . , P
′
n given by the columns of Q · KB have a common factor Q0. In

particular, this implies that they have a common root [u0 : v0]. Multiplying the matrix
AP ′

1,...,P
′
n

on the left by (u2n−1
0 , u2n−2

0 v0, · · · , u0v
2n−2
0 , v2n−1

0 ), we get

(u0P
′
1(u0, v0), v0P

′
1(u0, v0), · · · , u0P

′
n(u0, v0), v0P

′
n(u0, v0)).

Since P ′
i (u0, v0) = 0 for i = 1, . . . , n, we have a nontrivial element in the kernel of the

transpose of AP ′
1,...,P

′
n
, and therefore detAP ′

1,...,P
′
n
= A(B,Q) = 0. □

The next proposition states that our two regular maps have the same vanishing locus
(assuming that det VB ̸= 0).
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Proposition 4.6. The polynomials A(B,Q) and (det VB)
2n ·R(B,Q) have the same zero

locus.

Proof. Note that R(B,Q) = 0 if and only if B ∩ Q ̸= ∅. Indeed, R(B,Q) = 0 if
and only if there exists a point b ∈ B(k) for which Q1 − bxQ0 and Q2 − byQ0 have a
common root, which occurs if and only if there is a point [u0 : v0] ∈ P1(k) for which
Q1(u0, v0)− bxQ0(u0, v0) = 0 and Q2(u0, v0)− byQ0(u0, v0) = 0. Dividing by Q0(u0, v0),
we find that this condition is equivalent to the existence of [u0 : v0] ∈ P1

k
such that

Q(u0, v0) = [1 : bx : by], which shows that p ∈ Q(k).

By Lemma 4.5, if det VB = 0, then A(B,Q) = 0. It thus remains to show that if
det VB ̸= 0, then A(B,Q) = 0 if and only if Q ∩ B ̸= ∅. To this end, assume that
we have b = [1 : bx : by] ∈ (B ∩ Q)(k). Then the coordinates of the composition map
gB ◦ Q = γ have a common root [u0 : v0], and thus the proof of Lemma 4.5 gives us
A(B,Q) = 0.

Conversely, if A(B,Q) = 0, then there exist linear polynomials L1, · · · , Ln (in u, v) such
that

∑n
i=1 LiP

′
i = 0 by [FK21, Lemma 3.2.2.(3)]. It follows that

∑n
i=1 Li · gB,β′ ◦ [Q0 :

Q1 : Q2] = 0, where giB,β′ denotes the ith coordinate of the embedding gB,β′ , which
corresponds to the basis element β′

i. In particular, the conic Q is contained in the curve
Y :=

∑n
i=1 Liβ

′
i, which has degree n and contains the locus B. If B ∩ Q = ∅, then all

points of B are contained in the components of Y away from Q, so B is contained in a
curve of degree n− 2. But det VB ̸= 0, and hence there is no such curve. We thus have
B ∩Q ̸= ∅, as desired. □

Before giving examples of B and Q for which A(B,Q) = (det VB)
2n · R(B,Q) ̸= 0, we

need the following lemma about elementary symmetric polynomials.

Lemma 4.7. Let ei(X1, . . . , Xn) denote the ith elementary symmetric polynomial in n
variables. Adopt the convention that e0 = 1, and ei(X1, . . . , Xn) = 0 if i < 0 or i > n.
Then for any 1 ≤ j ≤ n, we have

ei+1(X1, . . . , Xn) =
i+1∑
z=0

ez(X1, . . . , Xj)ei−z+1(Xj+1, . . . , Xn).

Proof. Let
Ez := ez(X1, . . . , Xj)ei−z+1(Xj+1, . . . , Xn).

Each of the summands Ez consists of a sum of distinct monomials of degree i + 1,
each with coefficient 1. Moreover, given a monomial summand M := Xc1

1 · · ·Xcn
n of

ei+1(X1, . . . , Xn) (so cℓ ∈ {0, 1} and
∑n

ℓ=1 cℓ = i + 1), there is at most one z such that
M is a summand of Ez. Indeed, any monomial summand Xd1

1 · · ·Xdn
n of Ez must satisfy∑j

ℓ=1 dℓ = z.

It therefore suffices to show that the numbers of monomial summands in
∑i+1

z=0 Ez and
ei+1(X1, . . . , Xn) are equal. The latter number is

(
n

i+1

)
, essentially by definition of the el-

ementary symmetric polynomials. Similarly, the number of summands in ez(X1, . . . , Xj)
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and ei−z+1(Xj+1, . . . , Xn) are given by
(
j
z

)
and

(
n−j

i−z+1

)
, respectively. Since the indeter-

minates for these two elementary symmetric polynomials are disjoint, the product Ez

consists of
(
j
z

)(
n−j

i−z+1

)
distinct monomials. Summing up to count the distinct monomials

of
∑i+1

z=0 Ez, we find that it suffices to prove(
n

i+ 1

)
=

i+1∑
z=0

(
j

z

)(
n− j

i− z + 1

)
.

This follows from the binomial theorem by comparing the coefficient of xi+1 on both
sides of the equation

(x+ 1)n = (x+ 1)j(x+ 1)n−j.

Equivalently (but perhaps more illustratively), repeated application of the standard iden-
tity

(
n−m
i−z

)
+
(

n−m
i−z+1

)
=
(
n−m+1
i−z+1

)
implies that the following rows all have the same sum:(

n
i+1

)
(
n−1
i+1

)
+

(
n−1
i

)
(
n−2
i+1

)
+ 2

(
n−2
i

)
+

(
n−2
i−1

)
(
n−3
i+1

)
+ 3

(
n−3
i

)
+ 3

(
n−3
i−1

)
+

(
n−3
i−2

)
(
n−4
i+1

)
+ 4

(
n−4
i

)
+ 6

(
n−4
i−1

)
+ 4

(
n−4
i−2

)
+

(
n−4
i−3

)
. □

Proposition 4.8. Let a1, . . . , an ∈ k(ℓ) be distinct elements. Define

(4.7) B :=
{
[1 : ai : aj] ∈ P2

∣∣ 1 ≤ i < j ≤ n
}
,

and Q1 = Q2 = u2 and Q0 = v2. For these choices of B and Q, we have A(B,Q) =
det(VB)

2n · R(B,Q) ̸= 0.

Proof. We will prove this in four steps.

Step 1: R(B,Q) =
∏

i<j(ai − aj)
2. We prove this step directly. For each point [1 : ai :

aj] ∈ B, we have Q1 − aiQ0 = u2 − aiv
2 and Q2 − ajQ0 = u2 − ajv

2. Thus

R(B,Q) =
∏

1≤i<j≤n

Res(u2 − aiv
2, u2 − ajv

2)

=
∏

1≤i<j≤n

(ai − aj)
2.

Step 2: det VB ̸= 0. We prove this step by contradiction. If det VB = 0, then there exists
a non-zero polynomial f(x, y) of degree n − 2 such that f(ai, aj) = 0 for all
1 ≤ i < j ≤ n. If we fix x = a1, we get a polynomial f(a1, y) of degree at most
n− 2 with n− 1 distinct roots (y = a2, . . . , an). It follows that f(a1, y) = 0, so
x− a1 is a factor of f(x, y). Let f1(x, y) = f(x,y)

x−a1
. Then f1(a1, y) is a polynomial
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of degree at most n− 3 with n− 2 distinct roots, and hence x− a2 is a factor of
f1(x, y). Repeating this process, we find that x− ai is a factor of f(x, y) for all
i, and hence f(x, y) = 0 (as the deg(f) < n− 1). This contradicts the fact that
f was a non-zero polynomial, so we find that det VB ̸= 0.

Step 3: With our particular choice of [Q0 : Q1 : Q2] and B, we have

AP ′
1,...,P

′
n
= det VB ·



1 0 · · · 1 0
0 1 · · · 0 1

p2n−4,1 0 · · · p2n−4,n 0
0 p2n−4,1 · · · 0 p2n−4,n
...

...
. . .

...
...

p0,1 0 · · · p0,n 0
0 p0,1 · · · 0 p0,n


,

where

pj,i =

{
(−1)ℓ−1eℓ(a1, . . . , ân−i+1, . . . , an) j = 2n− 2− 2ℓ,

0 j odd

and eℓ(X1, . . . , Xn−1) is the ℓth elementary symmetric polynomial in n− 1 vari-
ables. (Here, we use the conventions that e0 = 1 and âi means that ai is omitted.)

Proving this formula is the lengthiest of our four steps. To begin, we need to
construct our basis β′ from the columns of

KB =

(
−V∗B · RB
det VB · In

)
.

We can then compute (pj,i) = Q · KB, where Q : k[X, Y, Z](n−1) → k[u, v](2n−2) is
the linear transformation given by

Q(X iY jZn−1−i−j) = u2(i+j)v2(n−1−i−j).

Since det VB ̸= 0, we have V∗B = det VB · V−1
B , and hence

KB = det VB ·
(
−V−1

B · RB
In

)
.

We may therefore compute the columns of KB by computing the columns of

K′B :=

(
−V−1

B · RB
In

)
.

From now on, we interpret the columns of K′B as polynomials in x, y (rather than
homogeneous polynomials in x, y, z) by setting z = 1. As identity matrices are
easy enough to understand, we turn our attention to V−1

B · RB. For each column
wj of RB (see Equation 4.4), we need to solve the system VB · fj = wj for the
column fj. That is, we need to find a degree n − 2 polynomial fj ∈ k(ℓ)[x, y]
(which we conflate with its column of coefficients) such that fj(bi,x, bi,y) = wi,j
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for all [1 : bi,x : bi,y] ∈ B, where wi,j denotes the ith row of wj. It follows that in
order to solve fj(bi,x, bi,y) = wi,j, it suffices to find a polynomial fj such that

gj(x, y) := fj(x, y)− xn−jyj−1

satisfies gj(bi,x, bi,y) = 0 for all 1 ≤ i ≤
(
n
2

)
. Let rjs,t ∈ k(ℓ) be such that

fj(x, y) =
n−2∑
s=0

(
s∑

t=0

rjs,ty
t

)
xn−2−s.

Let rjs(y) =
∑s

t=0 r
j
s,ty

t, so that fj(x, y) =
∑n−2

s=0 r
j
s(y)x

n−2−s.

We need to compute rjs,t such that gj(bi,x, bi,y) = 0 for all i. We will compute r1s,t
and r2s,t to illustrate our general approach, after which we will compute rjs,t for
all j. Recall that for our choice of B, we have

(b1,x, b1,y) = (a1, a2),

(bn−1,x, bn−1,y) = (a1, an),

(bn,x, bn,y) = (a2, a3),

(b2n−3,x, b2n−3,y) = (a2, an),

...

(b(n2),x
, b(n2),y

) = (an−1, an).

For j = 1, we have g1(x, y) = −xn−1 + f1(x, y). If g1(bi,x, bi,y) = 0 for all i, then
g1(x, an) is a degree n − 1 polynomial in x with roots a1, . . . , an−1. By Vieta’s
formulas, it follows that r10,0 = a1 + . . . + an−1. Note that for any fixed y0, the
roots of g1(x, y0) must also sum to a1 + . . .+ an−1. Thus the roots of g1(x, an−1)
are given by a1, . . . , an−2 (by our definition of B) and also an−1 (since the roots
must sum to a1 + . . .+ an−1). Vieta’s formulas now give us

−
∑

1≤i<j≤n−1

aiaj = r11,0 + r11,1an

= r11,0 + r11,1an−1,

so r11,1 = 0 and r11,0 = −∑i<j aiaj. Continuing this process for y = an−2, an−3, . . .,
we conclude that

r1s(y) = (−1)ses+1(a1, . . . , an−1),

where es+1 denotes the (s + 1)st elementary symmetric polynomial in n − 1
variables.

For j = 2, we have g2(x, y) = (r20,0 − y)xn−2 +
∑n−2

s=1 r
2
s(y)x

n−2−s. As with j = 1,
we will consider g2(x, an). We then have n− 1 roots (a1, . . . , an−1) of this degree
n−2 polynomial, so g2(x, an) must be identically zero. It follows that r2s(an) = 0
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for all s, so each of these polynomials is divisible by y − an. Let r̄2s(y) =
r2s(y)
y−an

.
Factoring, we have

g2(x, y) = (y − an)

(
−xn−2 +

n−2∑
s=1

r̄2s(y)x
n−2−s

)
.

Now since ai ̸= an for i < n, the assumption that g2(ai, an) = 0 implies that the
polynomial

−xn−2 +
n−2∑
s=1

r̄2s(an−1)x
n−2−s

has roots a1, . . . , an−2. Repeating our arguments from the j = 1 case, we
find that r̄2s(y) = (−1)ses(a1, . . . , an−2), where we now have the sth elemen-
tary symmetric polynomial in n − 2 variables (rather than the (s + 1)st el-
ementary symmetric polynomial in n − 1 variables). In particular, we have
r2s = (−1)s(y − an)es(a1, . . . , an−2) and hence

r2s,t =


(−1)s+1anes(a1, . . . , an−2), t = 0,

(−1)ses(a1, . . . , an−2) t = 1,

0 t ≥ 2.

For j > 2, we follow the same steps as in the j = 2 case. We find that a1, . . . , an−1

are roots of gj(x, an), so gj(x, an) = 0. Thus rj0,0 = 0, so gj(x, an) has degree n−3
in x. This implies that gj(x, an−1) = 0, which means that the linear polynomial
rj1(y) has distinct roots an and an−1 and must therefore be identically zero, and
likewise for the polynomials rjs(y) with s < j − 2 upon repeating this process.
We conclude that

gj(x, y) =

j−2∏
i=0

(y − an−i) ·
(
−xn−j +

n−2∑
s=j−1

r̄js(y)x
n−2−s

)
,

where

(4.8) r̄js(y) ·
j−2∏
i=0

(y − an−i) = rjs(y).

Since gj(x, an−j+1) = 0 and
∏j−2

i=0 (an−j+1 − an−i) ̸= 0, it follows that the degree
n− j polynomial

−xn−j +
n−2∑

s=j−1

r̄js(an−j+1)x
n−2−s

has roots a1, . . . , an−j. As in the j = 2 case, we find that

r̄js(y) = (−1)ses−j+2(a1, . . . , an−j).

It now follows from Equation 4.8 and Vieta’s formulas that

(4.9) rjs,t = (−1)s+t+1es−j+2(a1, . . . , an−j)ej−1−t(an−j+2, . . . , an),
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where we use the convention that e0 = 1 and em = 0 for m < 0.

We have solved for the columns of V−1
B · RB. When considering the columns of

K′B, we must multiply the columns of V−1
B · RB by −1. After composing with

[Q0 : Q1 : Q2] (i.e. multiplying by Q), the monomials corresponding to the
coefficients of the lower block In are all u2n−2 for our choice of conic. It follows
that

Q · K′B =



1 1 · · · 1
0 0 · · · 0

−∑n−2
s=0 r

1
s,s −∑n−2

s=0 r
2
s,s · · · −∑n−2

s=0 r
n
s,s

0 0 · · · 0

−∑n−3
s=0 r

1
s+1,s −∑n−3

s=0 r
2
s+1,s · · · −∑n−3

s=0 r
n
s+1,s

...
...

. . .
...

0 0 · · · 0
−(r1n−3,0 + r1n−2,1) −(r2n−3,0 + r2n−2,1) · · · −(rnn−3,0 + rnn−2,1)

0 0 · · · 0
−r1n−2,0 −r2n−2,0 · · · −rnn−2,0


.

To complete Step 3, it remains to show that

−
n−2−i∑
s=0

rjs+i,s = (−1)iei+1(a1, . . . , âj, . . . , an).

By Equation 4.9, we have

rjs+i,s = (−1)i+1es+i−j+2(a1, . . . , an−j)ej−1−s(an−j+2, . . . , an).

Note that rjs+i,s = 0 when s < j − i− 2 or s > j − 1, so

−
n−2−i∑
s=0

rjs+i,s = −
j−1∑

s=j−i−2

rjs+i,s.

We will re-index by setting z = s− (j − i− 2), so that

−
j−1∑

s=j−i−2

rjs+i,s = −
i+1∑
z=0

rjz+j−2,z+j−i−2

= (−1)i+2

i+1∑
z=0

ez(a1, . . . , an−j)ei−z+1(an−j+2, . . . , an).

It follows from Lemma 4.7 that
i+1∑
z=0

ez(a1, . . . , an−j)ei−z+1(an−j+2, . . . , an) = ei+1(a1, . . . , ân−j+1, . . . , an),

as required.
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Step 4: A(B,Q) = (det VB)
2n ·∏i<j(ai − aj)

2. By Step 3, we have

A(B,Q) = detAP ′
1,...,P

′
n

= (det VB)
2n · det



1 0 · · · 1 0
0 1 · · · 0 1

p2n−4,1 0 · · · p2n−4,n 0
0 p2n−4,1 · · · 0 p2n−4,n
...

...
. . .

...
...

p0,1 0 · · · p0,n 0
0 p0,1 · · · 0 p0,n


,

so it suffices to prove that the latter matrix (which we call Ñ) has determinant∏
i<j(ai − aj)

2 . Note that Ñ = N ⊗ I2, where

N :=


1 1 · · · 1

p2n−4,1 p2n−4,2 · · · p2n−4,n
...

...
. . .

...
p0,1 p0,2 · · · p0,n

 ,

so det Ñ = detN2. It therefore suffices to prove that

detN = ±
∏

1≤i<j≤n

(ai − aj),

which we will do by induction on n. Note that pi,j is a polynomial in n − 1
variables, even though this dependence on n is not reflected in the notation. To
make this dependence more explicit, let eℓ(ai,n) = eℓ(a1, . . . , âi, . . . , an) and

Nn =


1 1 · · · 1

e1(an,n) e1(an−1,n) · · · e1(a1,n)
...

...
. . .

...
(−1)n−2en−1(an,n) (−1)n−2en−1(an−1,n) · · · (−1)n−2en−1(a1,n)

 .

If n = 2, then we have

N2 =

(
1 1
a2 a1

)
,

and thus detN2 = a1 − a2, as desired. Next, assume that

detNn = ±
∏

1≤i<j≤n

(ai − aj)
2.

In order to compute detNn+1, subtract the first column of Nn+1 from the last n
columns of Nn+1. Since

eℓ(ai,n+1)− eℓ(an+1,n+1) = (an+1 − ai)eℓ−1(ai,n),

it follows that detNn+1 is equal to

det

(
1 0 ··· 0

e1(an+1,n+1) (an+1−an)e0(an,n) ··· (an+1−a1)e0(a1,n)
...

...
...

...
(−1)n−1en(an+1,n+1) (−1)n−1(an+1−an)en−1(an,n) ··· (−1)n−1(an+1−a1)en−1(a1,n)

)
.
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After factoring an+1 − ai out of the (n + 2 − i)th column for i = 1, . . . , n and a
−1 out of last n− 1 rows, the resulting matrix has the form

1 0 · · · 0
∗
...
∗

Nn

.

It follows that

detNn+1 = (−1)n−1

n∏
i=1

(an+1 − ai) · detNn

= −
n∏

i=1

(ai − an+1) · detNn.

We thus have
detNn+1 = ∓

∏
1≤i<j≤n+1

(ai − aj),

which completes the proof by induction. □

Our final goal is to show that A(B,Q) and (det VB)
2n · R(B,Q) differ by a constant,

which we will then show to be one. Before proving this, we need the following lemmas.

Lemma 4.9. As a polynomial on A2(n2) × A9 (in the coordinates of B and coefficients
of Q), the polynomials

Res(Q1 − bxQ0, Q2 − byQ0)

are irreducible over k(ℓ).

Proof. We can directly compute these resultants using the following Sage code.

R.<b_x ,b_y ,q_00 ,q_01 ,q_02 ,\\
q_10 ,q_11 ,q_12 ,q_20 ,q_21 ,q_22 > = QQ[];

S.<u> = R[];

Q_0 = q_00 + q_01*u + q_02*u^2;
Q_1 = q_10 + q_11*u + q_12*u^2;
Q_2 = q_20 + q_21*u + q_22*u^2;

f = Q_1 - b_x*Q_0;
g = Q_2 - b_y*Q_0;

print(f.resultant(g))

Let T = k(ℓ)[q00, . . . , q22, bx] with fraction field K. It is then straightforward to check
that h(by) := Res(Q1 − bxQ0, Q2 − byQ0) ∈ T [by] is a quadratic polynomial. Moreover,
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if we write h(by) = h2b
2
y + h1by + h0, we can compute that gcd(h0, h1, h2) = 1 (either

with Sage, or by noting that no terms of h2 are divisible by bx, but some terms of h0

and h1 are divisible by bx). Using the quadratic formula (and assuming char k ̸= 2), it is
straightforward to check that h(by) is irreducible over K[by]. It now follows from Gauß’s
lemma that h(by) is irreducible over T [by], as desired. □

Lemma 4.10. The polynomial det VB in the coordinates bi,x and bi,y is irreducible over
k(ℓ).

Proof. Recall that we have assumed n ≥ 3 (Remark 3.1), so
(
n
2

)
≥ 3. In the notation of

[DT09, Theorem 1.5], we have N =
(
n
2

)
,

(γ11 , γ21 , . . . , γN1) = (0, 1, 0, 2, 1, 0, . . . , n− 2, n− 3, . . . , 0),

(γ12 , γ22 , . . . , γN2) = (0, 0, 1, 0, 1, 2, . . . , 0, 1, . . . , n− 2),

and γ = (0, 0). Since γ2 = (1, 0), the largest natural number dΓ such that 1
dΓ
(γ2 − γ) =

( 1
dΓ
, 0) is an element of N2 is 1. Finally, since γ2 = (1, 0) and γ3 = (0, 1), it follows that

dimLΓ = 2. Therefore the assumptions of [DT09, Theorem 1.5] hold, which implies that
the interpolation determinant det VB is irreducible over any algebraically closed field. □

We can now show that A(B,Q) and R(B,Q) differ by c · (det VB)d for some constant c
and some integer d.

Proposition 4.11. As polynomials on A2(n2) × A9, we have A(B,Q) = c · det(VB)d ·
R(B,Q) for some c ∈ k(ℓ) and d ∈ Z.

Proof. Since A and det(VB)
2n · R have the same zero locus (Proposition 4.6), Hilbert’s

Nullstellensatz implies that radical ideals generated by the two polynomials are the same.
Therefore

(4.10)
√

(A) =
√
(det VB) ∩

√
(R).

Since R is the product of distinct irreducible polynomials (over k(ℓ)) and det VB is
irreducible (over k(ℓ)) by Lemmas 4.9 and 4.10, we conclude that the ideals (R) and
(det VB) are radical. This implies that

(4.11) A = c · det(VB)d ·
∏

b∈B(k(ℓ))

Res(Q1 − bxQ0, Q2 − byQ0)
Ni

for some integers d > 0 and Ni > 0 and some c ∈ k(ℓ).

We finish by showing that Ni = 1 for i = 1, . . . ,
(
n
2

)
. Consider the value of the polynomial

A for Q and λQ for some λ ∈ k(ℓ). By Proposition 4.2 (iii), we have Res(λQ1 −
λbxQ0, λQ2−λbyQ0) = λ4Res(Q1− bxQ0, Q2− byQ0). Similarly, by Proposition 4.4 (iii),
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we have A(λQ,B) = λ2n(n−1)A(Q,B). Comparing the multiplicity of λ in Equation 4.11,
we get

4

(n2)∑
i=1

Ni = 2n(n− 1),

which implies that
∑

i Ni =
(
n
2

)
. Since Ni > 0 for each i, we have Ni = 1 for all i. □

Finally, we conclude by using Proposition 4.8 to show that c = 1 and d = 2n in Equa-
tion 4.11.

Corollary 4.12. We have that c = 1 and d = 2n in equation 4.11. Therefore, up to
squares, A(B,Q) = R(B,Q), which implies that the conic index is equal to the local
index, as desired.

Proof. Proposition 4.8 and Equation 4.11 imply that

c · (det VB)d = (det VB)
2n

for any B of the form given in Equation (4.7). It follows that (det VB)
2n−d is constant

for any such B, which is true only if 2n− d = 0. Consequently, c = 1. □
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