
Local Contributions in A1-Enumerative Geometry

by

Stephen McKean

Department of Mathematics
Duke University

Date:
Approved:

Kirsten Wickelgren, Supervisor

Paul Aspinwall

Richard Hain

Adam Levine

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Mathematics

in the Graduate School of Duke University
2022



Abstract

Local Contributions in A1-Enumerative Geometry

by

Stephen McKean

Department of Mathematics
Duke University

Date:
Approved:

Kirsten Wickelgren, Supervisor

Paul Aspinwall

Richard Hain

Adam Levine

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Mathematics

in the Graduate School of Duke University
2022



Copyright © 2022 by Stephen McKean
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/


Abstract

Bézout’s theorem is a fundamental result in enumerative geometry: over an alge-

braically closed field, the intersection of n general hypersurfaces in Pn of degrees

d1, . . . , dn consists of d1 ¨ ¨ ¨ dn points, provided that one counts these intersection

points with the appropriate multiplicity.

Bézout’s theorem implies other classical theorems from enumerative geometry,

such as the count of the circles of Apollonius. Given three circles in general position,

there are eight circles that are simultaneously tangent to the original three. From a

Bézout-theoretic perspective, this is because the space of circles tangent to a given

circle is a quadratic cone in P3, and the intersection of three quadratic cones in P3

consists of 23 “ 8 points.

We prove versions of Bézout’s theorem and the circles of Apollonius over non-

algebraically closed fields. Our work follows the general theme of the A1-enumerative

geometry program as initiated by Kass–Wickelgren, Levine, and others. We express

a global fixed count as a sum of local contributions, where the local contributions

depend on the objects being enumerated. Working over a field k, both the fixed

count and local contributions are valued in the Grothendieck–Witt ring GWpkq of

isomorphism classes of non-degenerate symmetric bilinear forms over k. By taking

relevant invariants of bilinear forms over k, we obtain a weighted count of intersection

points over k.

While there have been significant developments in the literature on computing
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fixed counts in A1-enumerative geometry, the story of local contributions is non-

plussing. Our work on Bézout’s theorem and the circles of Apollonius focuses espe-

cially on describing the local contributions geometrically. We pose the geometricity

problem, which asks whether one can construct a geometric taxonomy for local contri-

butions in A1-enumerative geometry. We show how Bézout’s theorem answers a näıve

version of the geometricity problem, and we use the circles of Apollonius to explain

why Bézout’s theorem does not answer a more interesting version of geometricity.

For Bézout’s theorem, we use the A1-degree to associate a bilinear form (up

to isomorphism) to each intersection point, with the rank of the quadratic form

given by the intersection multiplicity. At transverse intersection points, this bilinear

form is determined by the gradient vectors of the hypersurfaces. At non-transverse

intersection points, one can use a deformation to express the bilinear form as a

direct sum over transverse intersections. Using an Euler class from motivic homotopy

theory, we show that the direct sum of these “intersection forms” is hyperbolic of

rank d1 ¨ ¨ ¨ dn.

Our A1-enumerative version of Bézout’s theorem gives the global fixed count for

the circles of Apollonius. We also show that the Bézout-theoretic local contribu-

tion can be viewed as a universal, albeit unsatisfactory, local contribution in A1-

enumerative geometry. By giving a geometric description of the local contributions

associated to the circles of Apollonius, we illustrate the shortcomings of Bézout’s

theorem as a universal local contribution.
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to see the forest through the trees.

Thanks to John Etnyre, Jen Hom, and Dan Margalit for welcoming me into the

topology group at Georgia Tech, Joe Rabinoff for teaching me everything I know

about schemes, and Greg Blekherman for giving me a taste for computational alge-

braic geometry.

I moved to Duke just before the pandemic broke out in the US. I am grateful

to Paul Aspinwall, Clark Bray, Robert Bryant, Veronica Ciocanel, Samit Dasgupta,

Kristen Gerondelis, Dick Hain, Adam Levine, Jianfeng Lu, Lenny Ng, Colleen Robles,

Les Saper, and Shira Viel for making the department a welcoming and supportive

place during such a strange time. Thanks also to the department staffs at Utah,

Georgia Tech, and Duke for their excellent work that too often goes unnoticed.

To my coauthors Thomas Brazelton, Robert Burklund, Cameron Darwin, Aygul

Galimova, Pam Gu, Daniel Minahan, Michael Montoro, Morgan Opie, Sabrina Pauli,

Soumya Sankar, and Tianyi Zhang, I am grateful for the many exciting and enriching

discussions, mathematical and otherwise. My particular thanks to Thomas Brazelton

and Sabrina Pauli for their extended collaboration — I learn something new every

time I talk with them.

I am indebted to the broader mathematical community for its magnanimity. Be-

yond the aforementioned mathematicians, I have had the good fortune of learn-

ing from Tom Bachmann, Clark Barwick, Federico Binda, Angie Cueto, Frédéric
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1

Introduction

There is a single line through any pair of points, eight circles simultaneously tangent

to a given trio of circles, and twenty-seven lines on any smooth cubic surface. For

millennia, mathematicians have sought to count solutions to geometric questions.

Traditionally, most results in enumerative geometry require that one work over an

algebraically closed field. Over non-algebraically closed fields, invariance of count is

lost: there are generally multiple possible counts for a given enumerative question.

While interesting things can be said about these possible counts [23,47,59], one would

also like a fixed count over any given field.

The path forward is suggested by real enumerative geometry. By the celebrated

theorem of Cayley and Salmon [15], every smooth cubic surface over C contains 27

lines. In contrast, Schläfli showed that a smooth cubic surface over R may con-

tain 3, 7, 15, or 27 lines [58]. Segre noted that there are two types of lines on

real cubic surfaces (hyperbolic and elliptic), but it was not until much later that

Finashin–Kharlamov and Okonek–Teleman noted that there are always exactly 3

more hyperbolic lines than elliptic lines on any real smooth cubic surface [30, 54].

That is, #thyperbolic linesu ´ #telliptic linesu “ 3. In particular, when real lines
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on real cubic surfaces are counted with an appropriate weight, invariance of count is

restored.

The goal of the A1-enumerative geometry program, also known as enriched or

quadratic enumerative geometry, is to restore invariance of count for enumerative

geometric problems over non-algebraically closed fields (or even more general base

schemes). Instead of integer-valued counts, A1-enumerative geometry provides counts

valued in isomorphism classes of symmetric non-degenerate bilinear forms. While a

bilinear form-valued count may initially seem bizarre or unnecessarily abstract, this

approach offers a distinct advantage: rather than working over a specific base field,

these quadratic enumerative formulas are valid over an arbitrary base field (perhaps

subject to some technical hypotheses). One can then recover a fixed, weighted count

over a given field k by applying relevant invariants of bilinear forms over k.

This paradigm is illustrated by Kass and Wickelgren’s enriched count of lines on

smooth cubic surfaces [37]. Let GWpkq be the Grothendieck–Witt ring of isomor-

phism classes of non-degenerate symmetric bilinear forms over a field k. This ring

is generated by the rank 1 forms xay “ rpx, yq ÞÑ axys, where a P kˆ; addition and

multiplication are given by direct sum and tensor product, respectively. To each line

L on a smooth cubic surface X over k, Kass and Wickelgren associate a non-zero

scalar aL in the field of definition kpLq of the line. They then show that

ÿ

LĂX

TrkpLq{kxaLy “ 15x1y ` 12x´1y, (1.1)

where TrkpLq{k denotes the field trace. Over an algebraically closed field, the rank of

Equation 1.1 states that #tL Ă Xu “ 15 ` 12, recovering the classical result. Over

R, taking the signature of Equation 1.1 yields

#tL : RpLq “ R and aL ą 0u ´#tL : RpLq “ R and aL ă 0u “ 15´ 12.

By showing that aL ą 0 for hyperbolic lines and aL ă 0 for elliptic lines, Kass and
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Wickelgren recover the fixed, weighted count of real lines on smooth cubic surfaces.

However, one need not stop at the already-known cases of C and R. Over any finite

field of odd characteristic, Kass and Wickelgren take the discriminant of Equation 1.1

to deduce that the number of elliptic lines defined over an odd extension plus the

number of hyperbolic lines defined over an even extension is always an even number.

In order to make sense of the latter result, one needs to define what it means for

a line to be elliptic or hyperbolic over a finite field. In analogy with the real case, one

could define a line L to be hyperbolic if aL is a square in kpLqˆ and elliptic otherwise.

However, this algebraic definition lacks the geometric nature of hyperbolic and elliptic

lines on real cubic surfaces. One of the key results in Kass and Wickelgren’s enriched

count of lines on cubic surfaces is their characterization of the local index xaLy in

terms of the geometry of the line L.

Geometrically interpreting the local indices that arise in A1-enumerative geome-

try will be a central theme in this dissertation. While there are many readily available

tools for computing local indices (see Section 2.1), finding a geometric description of

the local index is not so straightforward. This leads us to the following questions:

are local indices in A1-enumerative geometry always geometric, and, if so, is there

a classification of enumerative problems in terms of their local geometric interpre-

tation? We call these two questions the geometricity problem (see Question 5.1),

which we discuss in more detail in Chapter 5.

We should say something about the prefix “A1,” which comes from the tech-

nical machinery underlying A1-enumerative geometry. In practice, the local index

is given by the isomorphism class of the Scheja–Storch bilinear form [64]. By the

work of Eisenbud–Levine [27] and, independently, Khimshiashvili [34], the Scheja–

Storch form can be computed in terms of a special socle element of a local Artin

ring determined by the given morphism. More recently, we showed in joint work

with Brazelton and Pauli that the Scheja–Storch form can be computed using mul-
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tivariate Bézoutians [12]. Both of these approaches can be phrased purely in terms

of commutative algebra, and the latter approach has been implemented in Sage [11].

Commutative algebraic formulas for local indices are convenient, but the true

power of the theory comes from its topological guise. In a landmark result, Kass and

Wickelgren showed that the bilinear form of Eisenbud, Levine, and Khimshiashvili

is in fact the local A1-degree from A1-homotopy theory [36]. This homotopy theory

(also known as motivic homotopy theory) enables one to import many tools from

classical topology to the world of algebraic geometry [53]. In particular, motivic

homotopy theory provides a GWpkq-valued Euler class for vector bundles on schemes.

Using an analog of the Poincaré–Hopf theorem, Kass and Wickelgren relate the local

contributions coming from a sum of local A1-degrees to a global fixed count in the

form of an Euler class [37]. In other words, it is this connection to topology that

allows us to restore invariance of count. We will discuss these foundations in more

detail in Chapter 2.

There are many methods for computing Euler classes (and other characteristic

classes) in classical topology. Finding motivic homotopical analogs of these meth-

ods offers new tools for computing fixed counts in A1-enumerative geometry, and

this is an active area of research [2, 3, 41–43, 55]. In this sense, fixed counts in A1-

enumerative geometry come with an inherent interpretation but are hard to compute.

Our narrative for this dissertation will focus instead on local contributions, which

are relatively easy to compute but are hard to interpret.

1.1 Overview of results

In this dissertation, we give an A1-enumerative treatment of two classical results and

discuss their relationship to the geometricity problem. The first is Bézout’s theorem,

which counts intersection points of projective hypersurfaces.
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Theorem 1.1 (Bézout’s theorem). Let X1, . . . , Xn Ă Pn be general hypersurfaces of

degrees d1, . . . , dn over an algebraically closed field. Then
Şn
i“1Xi consists of d1 ¨ ¨ ¨ dn

points (when counted with intersection multiplicity).

Over a non-algebraically closed field, Theorem 1.1 is no longer true as stated. For

example, the curves in P2 defined by yz2´x3 an x2`y2´z2 have only two multiplicity

one intersections over R (see Figure 1.1). This can be rectified by including non-

rational intersections and weighting them by the degree of their residue field over

the base, but this is in essence just a restatement of Theorem 1.1.

Figure 1.1: Two curves over R

We give an enrichment of Bézout’s theorem. We assume
řn
i“1 di ” n` 1 mod 2

for technical reasons, and we begin with an assumption that X1, . . . , Xn intersect

transversely. This allows us to geometrically interpret the relevant local index as an

“intersection volume.” We then use a dynamic version of the A1-degree to remove

the transversality assumption in Chapter 5.

Theorem 1.2 (See Theorem 3.2). Let
řn
i“1 di ” n ` 1 mod 2, and let X1, . . . , Xn

be hypersurfaces of Pn of degree d1, . . . , dn that intersect transversely. Given an

intersection point p of X1, . . . , Xn, let Jppq be the signed volume of the parallelpiped

determined by the gradient vectors of X1, . . . , Xn at p. Then summing over the

intersection points of X1, . . . , Xn, we have
ÿ

points

Trkppq{kxJppqy “
d1 ¨ ¨ ¨ dn

2
px1y ` x´1yq,

5



Ci

Cj

Figure 1.2: Geometric interpretation for circles of Apollonius

where Trkppq{k : GWpkppqq Ñ GWpkq is given by post-composing with the field trace.

Applying invariants such as rank, signature, and discriminant allows us to deduce

analogs of Bézout’s theorem over fields like C, R, and Fq.

Classically, the circles of Apollonius are a special case of Bézout’s theorem. The

space of circles tangent to a given circle is a quadric cone in P3, so the circles of

Apollonius correspond to the 23 intersection points of three such cones. This al-

lows us to immediately deduce the beginnings of an enriched count of the circles of

Apollonius from Theorem 1.2. However, the geometric interpretation coming from

Bézout’s theorem is phrased in terms of the parameter cones instead of in terms

of the circles themselves. The main result of Chapter 4 gives a more geometrically

intrinsic interpretation of the local indices.

Lemma 1.3 (See Lemma 4.17). The local index for a circle C tangent to C1, C2, C3

is given by TrkpCq{kxP pCqy, where P pCq is an alternating sum of the areas of the

parallelograms spanned by the center of C and the centers of Ci and Cj for 1 ď i ă

j ď 3 (see Figure 1.2).

In analogy with the dynamic local A1-degree of Pauli–Wickelgren (which we recall

in Theorem 2.26), we give a description of the local A1-degree in families.

Theorem 1.4 (See Theorem 2.28). Let f : An
k Ñ An

k with isolated zero p such that

kppq{k separable. Let F : An
krts Ñ An

krts be a morphism such that VpF q Ñ Spec krts is

flat and F |t“0 “ f . Assume that VpF q is unramified away from t “ 0. Then for any

6



closed point c P A1
k, the perturbation f̃ :“ F |t“c : An

k Ñ An
k of f has a set of zeros

Z Ď f̃´1p0q such that

degA1

p pfq “
ÿ

qPZ

degA1

q pf̃q.

In forthcoming work, we will use Theorem 1.4 to give further geometric interpre-

tations of the local indices for the circles of Apollonius.

In Chapter 5, we ask whether all enriched enumerative problems admit a geomet-

ric interpretation of their local indices (see Question 5.1). We show that Bézout’s

theorem gives a universal geometric description in enriched enumerative geometry.

Proposition 1.5 (See Proposition 5.5). Let X be a k-scheme of dimension n. Let

V Ñ X be a relatively orientable vector bundle of rank n, and let ρ : detV b ωX
–
ÝÑ

Lb2 be a relative orientation of V Ñ X. Let σ : X Ñ V be a section. If p P σ´1p0q is

a simple zero with separable residue field kppq{k, then the local index indp σ is equal

to the intersection volume Trkppq{kxVolppqy.

Using the dynamic local degree (Corollary 5.6) and the familial local degree

(Corollary 5.7), we remove the transversality assumption from Proposition 1.5. How-

ever, as a case study, the circles of Apollonius indicate that the universal geometric

interpretation coming from Bézout’s theorem is not a satisfactory answer to Ques-

tion 5.1. Indeed, we are interested in interpretations that are phrased in terms of the

relevant geometry, rather than in terms of the moduli spaces parameterizing the ob-

jects being counted. This demonstrates how the local information in A1-enumerative

geometry is strictly richer than that of classical enumerative geometry.

1.2 Notation

The following notation will be used throughout this dissertation. Notation specific

to a given chapter will be given in the relevant chapter. We denote by k an arbitrary

7



field. The ring of power series and the field of Laurent series over k will be denoted

by krrtss and kpptqq, respectively. The vanishing locus of a collection of polynomials

(respectively, homogeneous polynomials) f1, . . . , fm, considered as a subvariety of

affine space (respectively, projective space) is denoted Vpf1, . . . , fmq.

1.2.1 Grothendieck–Witt groups

The Grothendieck–Witt group GWpkq is the group completion of the monoid of iso-

morphism classes of symmetric, non-degenerate bilinear forms over k, where the

group law is given by direct sum. The Grothendieck-Witt group is in fact a ring,

where multiplication comes from the tensor product of bilinear forms. See e.g. [39]

for the case where char k ‰ 2.

Given a P kˆ, we denote by xay the isomorphism class of the bilinear form px, yq ÞÑ

axy. It is a fact that GWpkq is generated by all such xay, subject to the following

relations [39, Chapter II, Theorem 4.1]:

(i) xab2y “ xay for all a, b P kˆ.

(ii) xayxby “ xaby for all a, b P kˆ.

(iii) xay ` xby “ xa` by ` xabpa` bqy for all a, b P kˆ such that a` b ‰ 0.

(iv) xay ` x´ay “ x1y ` x´1y for all a P kˆ.

Relation (iv) is actually redundant, but it is useful to know. We will use the

notation H :“ x1y ` x´1y, as this bilinear form (called the hyperbolic form) will

appear frequently. By relations (ii) and (iv), we note that xay¨H “ H and H¨H “ 2¨H.

Both the ring multiplication of GWpkq and the integer multiplication of GWpkq as

an abelian group under addition may be denoted by ¨ or by juxtaposition of symbols,

whichever is presently more visually appealing or less confusing.
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Given a finite separable field extension L{k, the field trace TrL{k : L Ñ k is

defined by TrL{kpxq “
ř

σPGalpL{kq σpxq. Given a bilinear form V ˆ V Ñ L, one can

post-compose with TrL{k to obtain a bilinear form V ˆ V Ñ L Ñ k. It follows that

post-composition with the field trace induces a transfer TrL{k : GWpLq Ñ GWpkq.

1.2.2 A1-degrees

The Brouwer degree in algebraic topology is often first defined as the group iso-

morphism rSn, Sns – Z. There is an analogous construction in motivic homotopy

theory. There are two motivic circles, namely the simplicial circle S1 and the mul-

tiplicative group sheaf Gm, so spheres in this context are of the form Sa ^ G^bm . In

one particular family of spheres, there is a convenient model in terms of schemes:

Sn ^G^nm » Pnk{P
n´1
k . Morel gives a group (in fact, ring) homomorphism

rPnk{Pn´1
k ,Pnk{Pn´1

k s Ñ GWpkq (1.2)

that is a surjection for n “ 1 and an isomorphism for n ě 2 [52]. Morel’s homo-

morphism is called the A1-degree, which we will denote by degA1

or simply deg if no

confusion arises. One can also associate a local A1-degree to a map f : An
k Ñ An

k at

a zero p (see 2.1.1 for details). We denote the local A1-degree of f at p by degA1

p pfq

or degppfq.

1.3 Outline

We give a survey of theoretical and computational tools for A1-enumerative geometry

in Chapter 2, as well as a description of the dynamic A1-degree of Pauli and Pauli–

Wickelgren [55, 56]. We discuss the local A1-degree in families in Section 2.1.3. In

Chapter 3, we give an arithmetic enrichment of Bézout’s theorem (which previously

appeared in [45]). We then discuss the circles of Apollonius in the A1-enumerative

context in Chapter 4. In Chapter 5, we pose the geometricity problem for local

9



indices in A1-enumerative geometry, and we discuss the insights about this problem

gained from Chapters 3 and 4. Finally, we review the results of this dissertation in

Chapter 6.

10



2

A1-Enumerative Geometry

We now give a brief outline of some of the tools and techniques available within A1-

enumerative geometry (see also [8,37,56]). Our focus will be on the bundle-theoretic

approach to enumerative geometry: we take a moduli space X parameterizing the

types of objects we want to count (over a field k), as well as a vector bundle V Ñ X

that encodes the geometric conditions we wish to impose on our objects of study.

We then construct a section σ : X Ñ V that vanishes precisely on the objects that

satisfy the desired geometric conditions.

Example 2.1. We can frame Bézout’s theorem as follows. Sections of Opd1q‘ ¨ ¨ ¨‘

Opdnq Ñ Pn are given by n-tuples pf1, . . . , fnq of homogeneous polynomials of degrees

d1, . . . , dn in n` 1 variables. Such a section vanishes on a point p P Pn if and only if

p is contained in the intersection Vpf1qX ¨ ¨ ¨XVpfnq. Note that the particular choice

of hypersurfaces Vpf1q, . . . ,Vpfnq depends on the choice of section σ.

Using an analog of the Poincaré–Hopf theorem, we can express the Euler class

epV, σq P GWpkq as a sum of local indices:

11



epV, σq “
ÿ

pPσ´1p0q

indp σ. (2.1)

In order to prove an enumerative theorem, we must address both sides of Equa-

tion 2.1. As described in Example 2.1, the choice of section σ : X Ñ V corresponds

to a particular instance of the enumerative problem; by showing that epV, σq does

not depend on σ, we obtain a global fixed count. Similarly, we need to show that

indp σ (however it is defined) does not depend on any choices made in the general

setup. Finally, we wish to geometrically describe the local indices indp σ in terms

of the relevant problem. See Sections 3.4 and 4.4 for examples and Chapter 5 for a

general discussion of such geometric interpretations.

Throughout our discussion, we will assume that X is a smooth k-scheme of di-

mension at least 1. The dimension assumption ensures that local coordinates of

the desired form exist. The smoothness assumption can be relaxed if one works

over a smooth subscheme of X. One may work over base schemes more general

than just fields in motivic homotopy theory, and much of the relevant setup for A1-

enumerative geometry in this context is given by Bachmann–Wickelgren [2]. There

is also recent work of Khan–Ravi and Chowdhury on motivic homotopy theory for

algebraic stacks [19,38], so the requirement that X be a scheme should be removable

as well.

2.1 Local contributions

We begin by recalling the definition of the local index indp σ of a section σ : X Ñ V ,

with [37, Section 4] as the standing reference for this section. The general idea is

to use local coordinates on X and a local trivialization of V to rewrite σ as a map

An
k Ñ An

k , where n “ dimX “ rankV . The local index indp σ will then be defined as

the local A1-degree of this map at the image of p under the local coordinates. After

12



going through this setup, we will recall the definition of and tools for computing the

local A1-degree.

Definition 2.2. Nisnevich coordinates about a closed point p P X consist of a Zariski

open neighborhood U Ď X containing p, along with an étale map ϕ : U Ñ An
k that

induces an isomorphism kppq – kpϕppqq of residue fields.

Using the smoothness assumption on X, Kass and Wickelgren show that Nis-

nevich coordinates exist about any closed point p P X when dimX ě 1 [37, Propo-

sition 20]. For our next step, we would like a local inverse ϕ´1 : An
k Ñ U so that we

can write σ ˝ ϕ´1 : An
k Ñ V |U . Often, one can pick an isomorphism ϕ : U Ñ An

k ,

from which one automatically gets Nisnevich coordinates about p and the desired

local inverse. In general, ϕ is étale-locally a finite cover. By assuming that p is an

isolated zero (in the sense of the following definition), we can therefore define a local

inverse to ϕ on U .

Definition 2.3. A closed point p P X is called an isolated zero of a section σ :

X Ñ V if there exists a Zariski open neighborhood U of p such that, as sets, we have

UXVpσq “ tpu. Equivalently, the local ring OVpσq,p is a finite k-algebra [37, Definition

22 and Proposition 23]. We say that σ has isolated zeros if any of the following three

equivalent criteria hold:

(i) all zeros of σ are isolated,

(ii) Vpσq consists of finitely many closed points, or

(iii) OVpσq is a finite k-algebra.

Now that we have σ ˝ ϕ´1 : An
k Ñ V |U , we will use a local trivialization V |U Ñ

U ˆ An
k

proj2
ÝÝÝÑ An

k to build our morphism An
k Ñ An

k . (If necessary, we can intersect
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U an appropriately small neighborhood of p to ensure that V |U is trivial.) How-

ever, not every possible choice of trivialization ψ : V |U Ñ An
k is suitable for our

purposes. We want the local A1-degree degϕppqpψ ˝ σ ˝ ϕ
´1q to be independent of

the choice of coordinates pU,ϕq and trivialization ψ. Because squares are trivial in

GWpkq, the following definitions give us the desired conditions on our coordinates

and trivialization [37, Definitions 17 and 21].

Definition 2.4. A relative orientation of V Ñ X is a pair pL, rhoq, where L is a line

bundle and rho : Lb2 Ñ HompdetTX, detV q. If V Ñ X has a relative orientation,

then we say that V is relatively orientable.

Definition 2.5. A section s P ΓpU,HompdetTX, detV qq is called a square if its

preimage rho´1psq P ΓpU,Lb2q is of the form `b ` for some section ` P ΓpU,Lq.

Definition 2.6. Nisnevich coordinates ϕ “ pϕ1, . . . , ϕnq on U determine a basis

det dϕ :“ dϕ1 ^ ¨ ¨ ¨ ^ dϕn of detT ˚X|U , and a local trivialization ψ “ pψ1, . . . , ψnq

of V |U determines a basis detψ :“ ψ1 ^ ¨ ¨ ¨ ^ ψn of detV |U .

Let pL, ρq be a relative orientation of V Ñ X. A local trivialization ψ is called

compatible with Nisnevich coordinates pU,ϕq and the relative orientation pL, ρq if

detψ b det dϕ P detV |U b detT ˚X|U – HompdetTX|U , detV |Uq

is a square.

Since Nisnevich coordinates always exist for n ě 1, it is natural to wonder whether

a compatible local trivialization always exists. Of course, if V Ñ X is not relatively

orientable, then no compatible local trivializations can exist, but this turns out to

be the only obstruction.

Proposition 2.7. Let X be a k-scheme of dimension n. Let V Ñ X be a relatively

orientable vector bundle of rank n, and let ρ : detV b ωX
–
ÝÑ Lb2 be a relative
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orientation of V Ñ X. Given Nisnevich coordinates ϕ : U Ñ An
k on an open

subscheme U Ď X, there exists a local trivialization ψ : V |U Ñ An
k ˆ U Ñ An

k Ñ An
k

that is compatible with pU,ϕq and pL, ρq.

Proof. The Nisnevich coordinates ϕ “ pϕ1, . . . , ϕnq on U determine a local trivializa-

tion dϕ :“ pdϕ1, . . . , dϕnq on the cotangent bundle T ˚X|U , which in turn determines

the distinguished basis element det dϕ :“ dϕ1^¨ ¨ ¨^dϕn of ωX |U :“ detT ˚X|U (con-

sidered as a rank one OXpUq-module). Let ψ “ pψ1, . . . , ψnq : V |U Ñ An
k ˆ U Ñ An

k

be a local trivialization. This determines the distinguished basis element detψ :“

ψ1 ^ ¨ ¨ ¨ ^ ψn of detV |U (considered as a rank one OXpUq-module).

If ρpdetψ b det dϕq “ ` b ` for some ` P L|U , then we are done. Otherwise,

note that L|b2
U – L|U – OXpUq and hence ρpdetψ b det dϕq P L|b2

U – OXpUq. Let

f P OXpUq be the image of ρpdetψ b det dφq, and let ψ1 “ pfψ1, ψ2, . . . , ψnq. Now

the image in OXpUq of ρpdetψ1 b det dφq is f 2. Letting ` P L|U be the preimage of

f under L|U – OXpUq, we have ρpdetψ1 b det dϕq “ `b `.

We can now define the local index of a section σ : X Ñ V at a zero p P X [37,

Definition 30].

Definition 2.8. Let X be a k-scheme of dimension n ě 1, and let V Ñ X be a

relatively orientable vector bundle. Fix a relative orientation of V . The local index

indp σ of a section σ : X Ñ V at an isolated zero p P X is defined to be the local

A1-degree degppψ ˝ σ ˝ ϕ
´1q P GWpkq, where pU,ϕq are Nisnevich coordinates about

p and ψ is a local trivialization that is compatible with pU,ϕq and the chosen relative

orientation of V . By [37, Corollary 31], the local index is independent of the choice

of Nisnevich coordinates and compatible local trivialization.

Remark 2.9. Kass and Wickelgren originally defined the local index in terms of the

Scheja–Storch form [64], which was known to be equal to the local A1-degree under
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certain hypotheses [36]. It was later shown by Bachmann and Wickelgren that these

hypotheses can be removed [2, Section 7].

2.1.1 Local A1-degree

Since the local index of a section is defined as a local A1-degree, we will briefly

recall the relevant definitions. We will then provide a survey of a few techniques for

computing local A1-degrees.

Let f : An
k Ñ An

k be a morphism with an isolated zero p. This induces a map

f̄ : An
k{pAn

k´tpuq Ñ An
k{pAn

k´t0uq of motivic spaces. By excision, we have An
k{pAn

k´

tquq » Pnk{pPnk´tquq for any closed point q. If q is k-rational (as is the case for 0), then

Morel and Voevodsky’s purity theorem implies that Pnk{pPnk´tquq » Pnk{P
n´1
k . Since p

need not be k-rational, we instead use the collapse map cp : Pnk{P
n´1
k Ñ Pnk{pPnk´tpuq.

Putting this all together enables us to define the local A1-degree.

Definition 2.10. The local A1-degree of f : An
k Ñ An

k at an isolated zero p is the

A1-degree of the composite

Pnk{Pn´1
k

cp
ÝÑ Pnk{pPnk ´ tpuq » An

k{pAn
k ´ tpuq

f̄
ÝÑ An

k{pAn
k ´ t0uq » Pnk{Pn´1

k .

In an influential paper, Kass and Wickelgren showed that the local A1-degree can

be computed in terms of commutative algebra (via the Eisenbud–Khimshiashvili–

Levine or EKL form), provided that p is k-rational or f is étale at p [36]. In joint

work with Brazelton, Burklund, Montoro, and Opie, we weaken the assumption on

p by proving an analogous result whenever kppq{k is a finite separable extension [9].

Construction 2.11 (EKL form). Let f “ pf1, . . . , fnq : An
k Ñ An

k have an isolated

k-rational zero at p, and let mp “ px1 ´ p1, . . . , xn ´ pnq be the maximal ideal in

krx1, . . . , xns corresponding to p. The EKL form is a bilinear form on the local ring

Qp :“
krx1,...,xnsmp

pf1,...,fnq
, which is a finite k-algebra by the assumption that p is an isolated
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zero. Since f vanishes at p, we can write

fi “
n
ÿ

j“1

aijpxj ´ pjq

for each 1 ď i ď n. While such a composition is not unique, Scheja and Storch

showed that the image E of detpaijq in Qp is independent of the choices of aij;

moreover, E generates the socle of Qp, which is the annihilator of the maximal ideal

mp [64]. Scheja and Storch then construct an explicit k-linear form η : Qp Ñ k that

satisfies ηpEq “ 1. From this, they obtain a symmetric non-degenerate bilinear form

Φη : Qp ˆQp Ñ k given by Φηpx, yq “ ηpxyq.

The insight of Eisenbud–Levine [27] and Khimshiashvili [34] is that if λ : Qp Ñ k

is any k-linear form satisfying λpEq “ 1, then Φλ is isomorphic to Φη. An EKL form

is a bilinear form Φλ for any such λ. By [36], the local A1-degree can therefore be

computed at a k-rational point by:

1. Calculating a k-basis for Qp,

2. Calculating E P Qp,

3. Picking a linear form λ : Qp Ñ k such that λpEq “ 1.

4. Taking the isomorphism class of Φλ.

If p is not k-rational but kppq{k is separable, then one can compute an EKL form

Φλ1 of the base change fkppq of f at the kppq-rational lift of p. The local A1-degree

will be given by degppfq “ Trkppq{k β, where β is the isomorphism class of Φλ1 [9].

Remark 2.12. If the EKL form of f at a separable point p is rank rkppq : ks, then

the EKL form (and thus the local A1-degree) is given by the Jacobian: degppfq “

Trkppq{kxJacpfqppqy [36, Proposition 15] (see also [64, (4.7) Korollar]). Since the Ja-

cobian of a morphism has a straightforward geometric interpretation (as discussed
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in Section 3.4), it is generally desirable to reduce to this “transverse” case. We de-

scribe in Section 2.1.2 the dynamic local A1-degree, which allows one to make such

reductions.

While computing the local A1-degree via EKL forms is useful, there are limitations

to this approach. For example, if kppq{k is not a separable extension, it is not clear

how to use the EKL form to compute the local A1-degree (except in dimension 1 [10]).

Another limitation is that the EKL form can only be used to compute a local degree,

instead of the global A1-degree

degpfq :“
ÿ

pPf´1p0q

degppfq.

In dimension 1, Cazanave gives a method for computing the global A1-degree in

terms of the Bézoutian [16]. In joint work with Brazelton and Pauli, we proved that

the multivariate Bézoutian can be used to compute local and global A1-degrees in

any dimension, with no restrictions on p in the local case [12].

Construction 2.13 (Bézoutian). Consider the polynomials

∆ij :“
fipY1, . . . , Yj´1, Xj, . . . , Xnq ´ fipY1, . . . , Yj, Xj`1, . . . , Xnq

Xj ´ Yj

in krX1 . . . , Xn, Y1, . . . , Yns. The (multivariate) Bézoutian of f is the determinant

Bézpfq :“ detp∆ijq. Let X “ pX1, . . . , Xnq and Y “ pY1, . . . , Ynq. We define Bézpfq

to be the image of Bézpfq in krX,Y s
pf1pXq,f1pY q,...,fnpXq,fnpY qq

. This ring is isomorphic to

krxs
pf1pxq,...,fnpxqq

b
krxs

pf1pxq,...,fnpxqq
, where x “ px1, . . . , xnq. At a point p corresponding

to the maximal ideal mp Ă krxs, we define Bézppfq to be the image of Bézpfq in

krxsmp

pf1pxq,...,fnpxqq
b

krxsmp

pf1pxq,...,fnpxqq
. Let tb1pxq, . . . , bmpxqu be a k-basis for krxs

pf1,...,fnq
(re-

spectively,
krxsmp

pf1,...,fnq
). Write Bézpfq (respectively, Bézppfq) as

řm
i,j“1 aijbipxq b bjpxq
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for some aij P k. Then degpfq (respectively, degppfq) is given by the isomorphism

class of the bilinear form represented by the Gram matrix paijq [12]. This gives

a straightforward algebraic characterization of the A1-degree, and this method has

been implemented in Sage [11].

Remark 2.14. Recall that deg : rP1
k,P1

ks Ñ GWpkq is merely a surjection, not an

isomorphism. Morel further showed that rP1
k,P1

ks – GWpkq ˆkˆ{pkˆq2 k
ˆ [51]. In the

global, dimension 1 case, Cazanave shows that the extra kˆ factor is accounted for

by the determinant of the Bézoutian [16]. That is, denoting the isomorphism class

of the Bézoutian bilinear form by Béz, the unstable A1-degree

degu : rP1
k,P1

ks Ñ GWpkq ˆkˆ{pkˆq2 k
ˆ

is given by pBéz, det Bézq.

2.1.2 Dynamic local A1-degree

Using dynamic intersections, one can relate a special intersection to a generic one [31,

Section 11]. The classical dynamic intersection was enriched by Pauli to give a

dynamic A1-Euler number [55], as well as by Pauli–Wickelgren to give a dynamic

A1-Milnor number [56]. In fact, Pauli–Wickelgren’s approach can be repeated almost

verbatim to give a dynamic local A1-degree for any f : An
k Ñ An

k . We recall the

details here, with [56, Section 6.3] as the standing reference for Section 2.1.2. This

will culminate in Theorem 2.26, which is essentially a rephrasing of [56, Theorem 5].

Throughout this section, let k be a field with char k ‰ 2. We begin with the classical

computation of GWpkrrtssq:

Proposition 2.15. The map xrptqy ÞÑ xrp0qy defines an isomorphism

ev0 : GWpkrrtssq
–
ÝÑ GWpkq

with inverse induced by the inclusion map k ãÑ krrtss.
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Proof. This follows from the fact that GWpkrrtssq is generated by elements of the

form xrptqy for units rptq P krrtssˆ (see e.g. [2, Lemma B.3]). Any such unit satisfies

rp0q ‰ 0, so we may write rptq “
ř8

i“0 ait
i “ a0p1 `

ř8

i“1
ai
a0
tiq. Since char k ‰ 2,

there exists a square root sptq P krrtss of 1 `
ř8

i“1
ai
a0
ti. In particular, in GWpkrrtssq,

we have

xrptqy “ xa0sptq
2
y

“ xa0y “ xrp0qy.

We now summarize the relationships between GWpkq, GWpkrrtssq, and GWpkpptqqq.

Any element of kpptqq is either of the form u or ut, where u is a unit under the ptq-adic

valuation. The second residue homomorphism Bt : GWpkpptqqq Ñ Wpkq is defined by

Btxuty “ xūy and Btxuy “ 0, where ū P k is the residue of u in kpptqq{ptq. More

generally, the second residue homomorphism is defined on Milnor–Witt K-groups

Bt : KMW
n pkpptqqq Ñ KMW

n´1pkq,

with KMW
n pkrrtssq :“ ker Bt [52, p. 58]. Setting n “ 0 recovers the short exact sequence

0 Ñ GWpkrrtssq Ñ GWpkpptqqq
Bt
ÝÑ Wpkq Ñ 0

of abelian groups. Denote the inclusion of ker Bt by ı : GWpkrrtssq Ñ GWpkpptqqq.

Let π : GWpkpptqqq � GWpkq be projection on the first factor under Springer’s

theorem [39, Chapter VI, Theorem 1.4]. Together with ev0 : GWpkrrtssq Ñ GWpkq,

these maps form a commutative triangle.

Proposition 2.16. The following diagram commutes.

GWpkrrtssq GWpkpptqqq

GWpkq

ı

ev0 –
π
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Proof. The composite ı˝ev´1
0 : GWpkq ãÑ GWpkpptqqq is the injection induced by the

inclusion k ãÑ kpptqq defined by a ÞÑ a [39, p. 146], so π ˝ ı “ ev0 by the definition of

π.

Given a map An
k Ñ An

k , we will build a deformation (that is, a map over krrtss)

whose local degree at a special fiber is our local degree valued in GWpkq. The general

fiber of this map will have local degree valued in GWpkpptqqq. Proposition 2.16 will

enable us to relate these two local degrees and exploit the genericity of transverse

intersections.

Let f1, . . . , fn P krx1, . . . , xns. Given g1, . . . , gn P krrtssrx1, . . . , xns, let

X :“ Vpf1 ` tg1, . . . , fn ` tgnq Ď An
krrtss.

Notation 2.17. Given a scheme Y Ñ Spec krrtss, denote its special fiber by Y0 :“

Spec k ˆSpec krrtss Y and its generic fiber by Yt :“ Spec kpptqq ˆSpec krrtss Y .

Note that Vpf1, . . . , fnq “ X0. Since krrtss is a local ring, [63, Lemma 04GG (12)]

implies that X “ Xfin >Xě1, where Xfin Ñ Spec krrtss is finite and pXě1q0 is a union

of irreducible k-schemes of dimension at least 1.

Notation 2.18. Given a closed point p P X0, let Xp be the union of all irreducible

components of X containing p.

The scheme Xp is a finite collection of points, namely p and the points that p

splits into in the generic fiber Xt. To see this, we first show that Xp Ñ Spec krrtss is

finite.

Proposition 2.19. If p P X0 is isolated, then Xp Ñ Spec krrtss is finite.

Proof. Since p is isolated, the local ring OX0,p is finite as a k-module. In particular,

the special fiber of any irreducible component of X containing p must be finite over

k, so the decomposition X “ Xfin > Xě1 implies that Xp is a closed subscheme of
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Xfin. The finiteness of Xp Ñ Spec krrtss now follows from the finiteness of Xfin Ñ

Spec krrtss.

We are now ready to show that p is the only point in the special fiber pXpq0.

Since Y “ Y0 > Yt (set-theoretically) for any krrtss-scheme Y , it will follow that

Xp´tpu “ pXpqt. By construction, pXpqt consists of the points that map to p under

Xt Ñ X0, or in other words, the points that p P X0 splits into in the generic fiber

Xt.

Proposition 2.20. If p P X0 is isolated, then p is the only point of pXpq0.

Proof. Let xt P pX
pqt be a point. The residue field κpxtq of xt is a finite extension

of kpptqq. Letting R be the integral closure of krrtss in κpxtq, we get a commutative

diagram

Specκpxtq Xp

SpecR Spec krrtss.

(2.2)

The map SpecR Ñ Spec krrtss is finite by [63, Lemma 032Q] and [63, Lemma 032L]

if char k “ 0 or [63, Lemma 032N] if char k ‰ 0. Since Xp Ñ Spec krrtss is fi-

nite, it is also a proper morphism, so the valuative criterion for properness [63,

Lemma 0A40] implies that there is a unique morphism SpecR Ñ Xp that com-

mutes with Diagram 2.2. Moreover, the image of SpecR (which we denote by x)

is a component of Xp, since having a finite map Xp Ñ Spec krrtss implies that

dimXp ď dim Spec krrtss “ dimR [63, Lemma 0ECG]. Thus p P x by definition

of Xp.

By [7, Section 3.2.4, Theorem 2], R is a complete discrete valuation ring. Since

krrtss Ñ R is finite, dimR “ 1. The Cohen structure theorem (see e.g. [63, Section

0323]) thus implies that R – Lrruss for some finite extension L{k and some parameter
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u. In particular, the special fiber pSpecRq0 contains a unique point, so the special

fiber x0 P pX
pq0 consists of a unique point. As p P x, it follows that x0 “ p, so the

special fiber of any component of Xp consists solely of the point p.

Our next goal is to show that OXppXpq is a free krrtss-module and that pf1 `

tg1, . . . , fn ` tgnq is regular sequence. This will allow us to define the local degree

degA1

p pf1 ` tg1, . . . , fn ` tgnq P GWpkrrtssq as the isomorphism class of the Scheja–

Storch bilinear form OXppXpq ˆOXppXpq Ñ krrtss [64, §3].

Proposition 2.21. If p P X0 is isolated, then OXppXpq is a local ring.

Proof. In the proof of Proposition 2.20, we saw that (as a set of points) Xp consists

of a set of maximal points xt P pX
pqt and a unique closed point p P pXpq0. Since

Xp Ñ Spec krrtss is finite, it is also quasi-compact. In particular, the topological

space underlying Xp is quasi-compact by [63, Lemma 01K4]. Now [17, Proposition

4] implies that Xp “ SpecR for some local ring R. In particular, Xp is affine, so

R – OXppXpq.

Proposition 2.22. If p P X0 is isolated, then there exists a krrtss-module M such

that pf1 ` tg1, . . . , fn ` tgnq is a regular sequence in M and OXppXpq – M{pf1 `

tg1, . . . , fn ` tgnq.

Proof. Let m Ă krrtssrx1, . . . , xns be the maximal ideal corresponding to the point p

over krrtss (with t P m), and let m0 “ m{ptq “ m X krx1, . . . , xns (which corresponds

to p over k). Set R “
krrtssrx1,...,xns

pf1`tg1,...,fn`tgnq
. Let minpRq be the set of minimal primes

of R (corresponding to the irreducible components of X), and let minpRqp be the

set of minimal primes of R that are contained in the image of m (corresponding to

the irreducible components of Xp). Finally, let S “ R ´ minpRqp. We claim that

OXppXpq – S´1R, from which it will follow that OXppXpq –
Q´1pkrrtssrx1,...,xnsq
pf1`tg1,...,fn`tgnq

for some
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multiplicatively closed subset Q Ă krrtssrx1, . . . , xns (since localization commutes with

quotients).

To prove the claim, we first note that S is multiplicatively closed. Indeed, since

Xp is finite over a Noetherian base, Xp is Noetherian. Thus Xp has finitely many

components, so minpRqp is a finite set of primes. Moreover, p P SpecS´1R if and

only if p P minpRqp, so SpecS´1R “ Xp.

The assumption that p P X0 is isolated implies that the local ring OX0,p has di-

mension 0. Note that OX0,p –
Q´1pkrrtssrx1,...,xnsq
pf1`tg1,...,fn`tgn,tq

. Since M :“ Q´1pkrrtssrx1, . . . , xnsqm

is a regular local ring (of dimension n ` 1), it is a local Cohen–Macaulay ring.

Thus [63, Lemma 02NJ] implies that pf1 ` tg1, . . . , fn ` tgn, tq is a regular sequence

in M . It follows that pf1 ` tg1, . . . , fn ` tgnq is also a regular sequence in M .

Since S´1R is already local by Proposition 2.21, we also have OXppXpq – S´1R –

M{pf1 ` tg1, . . . , fn ` tgnq.

Proposition 2.23. If p P X0 is isolated, then Xp Ñ Spec krrtss is flat.

Proof. Using the notation in the proof of Proposition 2.22, we have that krrtss is

a regular local ring of dimension 1, S´1R is Cohen–Macaulay of dimension 1, and

S´1R b k – OX0,p has dimension 0. Thus [44, Theorem 23.1 (p. 179)] implies that

Xp Ñ Spec krrtss is flat.

Proposition 2.24. If p P X0 is isolated, then OXppXpq is a free krrtss-module.

Proof. Since krrtss is Noetherian and Xp Ñ Spec krrtss is finite, flatness (Proposi-

tion 2.23) implies that OXppXpq is a projective krrtss-module. Since projective mod-

ules are locally free, OXppXpq being local (Proposition 2.21) that OXppXpq is a free

krrtss-module.

We can now define degA1

p pf1 ` tg1, . . . , fn ` tgnq P GWpkrrtssq.
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Definition 2.25. Let pf1, . . . , fnq : An
k Ñ An

k with isolated zero p. Let g1, . . . , gn be

any elements of krrtssrx1, . . . , xns such that

Spec
krrtssrx1, . . . , xns

pf1 ` tg1, . . . , fn ` tgnq
Ñ Spec krrtss

is finite and flat. Let X “ Vpf1` t1g1, . . . , fn` tgnq. Define degA1

p pf1` tg1, . . . , fn`

tgnq P GWpkrrtssq to be the isomorphism class of the Scheja–Storch bilinear pairing

OXppXpq ˆOXppXpq Ñ krrtss determined by the regular sequence pf1 ` tg1, . . . , fn `

tgnq.

Putting this all together, we get the following rephrasing of [56, Theorem 5]:

Theorem 2.26 (Dynamic local A1-degree). Let pf1, . . . , fnq : An
k Ñ An

k with isolated

zero p. Let g1, . . . , gn be any elements of krrtssrx1, . . . , xns such that

Spec
krrtssrx1, . . . , xns

pf1 ` tg1, . . . , fn ` tgnq
Ñ Spec krrtss

is finite and flat. Let X “ Vpf1 ` t1g1, . . . , fn ` tgnq, and let Xp
t :“ pXpqt Ă An

kpptqq

be the collection of points that p splits into under the deformation X0 ÞÑ Xt. Then

degA1

p pf1, . . . , fnq “ π|impıq

¨

˝

ÿ

zPXp
t

degA1

z pf1 ` tg1, . . . , fn ` tgnq

˛

‚

as elements of GWpkq.

Proof. Let f “ pf1, . . . , fnq and g “ pg1, . . . , gnq. By construction, we have

ev0pdegA1

p pf ` tgqq “ degA1

p pfq

as elements of GWpkq. The map An
krrtss Ñ An

kpptqq induced by the inclusion krrtss ãÑ

kpptqq sends p P X Ă An
krrtss to Xp

t Ă An
kpptqq, so

ıpdegA1

p pf ` tgqq “
ÿ

zPXp
t

degA1

z pf ` tgq
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as elements of GWpkpptqqq. The result now follows from Proposition 2.16.

In Chapter 5, we will use Theorem 2.26 to give an enrichment of Bézout’s theorem

without the transversality hypothesis.

2.1.3 Computing the local degree in families

In essence, the dynamic approach enables us to compute the local A1-degree at a

point by computing a sum of local A1-degrees over a nearby fiber. Using Harder’s

theorem [36, Lemma 30], we might instead try to compute degA1

p pfq by computing

a sum of local A1-degrees over an arbitrary fiber in a family containing p. Since

Vpfq is zero dimensional, a family X Ñ Spec krts with special fiber X0 “ Vpfq is a

branched cover of the affine line. We want to separate p, a point of higher intersection

multiplicity, into a set of reduced points. We then wish to express degA1

p pfq as a sum

of local A1-degrees over this set of reduced points.

However, if X is ramified somewhere between the special fiber X0 and the fiber

over which we wish to compute the local A1-degree, then we may lose track of the

individual points at which to compute — there can be multiple points in the fiber X0

that belong to the same connected component of X (see Figure 2.1). We will avoid

this issue by assuming that X is ramified only at the fiber containing p. We can then

remove the unwanted components of X by localizing to the irreducible components

of X that contain p (see Figure 2.2). In a sense, our ramification assumption allows

us to mimic the dynamic approach over the non-local base Spec krts.

Before describing the familial local A1-degree (Theorem 2.28), we need the fol-

lowing analog of Proposition 2.19:

Lemma 2.27. Let ϕ : X Ñ Spec krts be a morphism of finite type, where X is affine.

Assume that every irreducible component of X surjects onto Spec krts under ϕ, that

ϕ is unramified away from t “ 0, and that X0 is a single closed point. Then ϕ is

26



Spec krts

X
p

Figure 2.1: Losing track of points that split off from p

Spec krts

X
p

Spec krts

Xp
p

Figure 2.2: Removing disjoint sheets

finite and flat.

Proof. We will first show that ϕ is flat. Write X “ SpecA for some krts-module A.

Since krts is a Dedekind domain, it suffices to show that A is torsion-free. Suppose

g P krts is a non-zero element that annihilates some a P A. Then for any irreducible

component Y Ď X on which a does not vanish, we have ϕpY q Ď Vpgq Ĺ Spec krts.

But this contradicts our assumption that each irreducible component of X surjects

onto Spec krts, so we deduce that ϕ is flat.

Next, we show that ϕ has finite fibers. Since ϕ is affine and finite type, ϕ is quasi-

finite if and only if it has finite fibers [63, Lemma 02NH]; the same is also true for the

restriction of ϕ to ϕ1 : X ´X0 Ñ A1
k´t0u. The map ϕ1 is unramified by assumption

and is therefore locally quasi-finite by [63, Lemma 02V5]. Since ϕ1 is affine and hence

quasi-compact [63, Lemma 01S7], it follows that ϕ1 is quasi-finite [63, Lemma 01TJ].

Thus ϕ1 has finite fibers. The fiber of ϕ above 0 is finite by assumption, so ϕ has

finite fibers.
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Finally, note that if Z is an irreducible component of X´X0, then each fiber of Z

consists of a single point. Indeed, Z is connected (being irreducible), so if some fiber

of Z consists of more than one point, then Z consists of more than one sheet. But

Z Ñ A1
k ´ t0u is unramified, so these sheets must remain disjoint. This contradicts

the assumption that Z is irreducible. Thus Z Ñ A1
k ´ t0u is injective, so this map is

an isomorphism. It follows that Z Y X0 is isomorphic to Spec krts, so X is a finite

union of isomorphic copies of Spec krts. As a result, X is finite over Spec krts.

Theorem 2.28 (Familial local A1-degree). Let f : An
k Ñ An

k with isolated zero p

such that kppq{k separable. Let F : An
krts Ñ An

krts be a morphism such that VpF q Ñ

Spec krts is flat and F |t“0 “ f . Assume that VpF q is unramified away from t “ 0.

Then for any closed point c P A1
k, the perturbation f̃ :“ F |t“c : An

k Ñ An
k of f has a

set of zeros Z Ď f̃´1p0q such that

degA1

p pfq “
ÿ

qPZ

degA1

q pf̃q.

Proof. We will construct a pair pQ, βq, where Q is a finite locally free krts-module

and β is a non-degenerate symmetric bilinear form on Q, such that

(i) the isomorphism class of β|t“0 is degA1

p pfq, and

(ii) the isomorphism class of β|t“c is
ř

qPZ degA1

q pf̃q.

Once we have constructed pQ, βq, it will follow from [36, Lemma 30] that degA1

p pfq “

ř

qPf̃´1p0q degA1

q pf̃q.

Let m Ă krtsrx1, . . . , xns be the maximal ideal corresponding to p with t P m, and

let P be the set of minimal prime ideals pF1, . . . , Fnq Ď p Ă m. Note that the prime

ideals in P correspond to the irreducible components of VpF q “ Spec krtsrx1,...,xns
pF1,...,Fnq

containing p. Since VpF q Ñ Spec krts is unramified away from t “ 0, this map is
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quasi-finite away from t “ 0 [63, Lemma 02V5]. In particular, VpF q Ñ Spec krts

has finite fibers away from t “ 0, so P is a finite set of prime ideals. It follows that

S “ krtsrx1, . . . , xns ´ P is multiplicatively closed. Set Q “
S´1pkrtsrx1,...,xnsq

pF1,...,Fnq
. The

localization SpecQ is the restriction of the vanishing locus VpF q to the components

that specialize to p at t “ 0.

By construction, SpecQ0 “ tpu, so Lemma 2.27 implies that Q is a finite krts-

module. Since SpecQÑ VpF q is flat by [63, Lemma 00HT (1)] and VpF q Ñ Spec krts

is flat by assumption, [63, Lemma 01U7] implies that Q is a flat krts-module. Since

krts is Noetherian, Q being a finite krts-module is equivalent to Q being a finitely

presented krts-module, so [63, Lemma 00NX (1) and (7)] implies that Q is a finite

locally free krts-module. (In fact, Q is projective over a PID, so Q is even a free

krts-module.)

We thus have the desired Q. We define β to be the Scheja–Storch form on Q

associated to the sequence pF1, . . . , Fnq. This gives us (i), as Q0 “
krx1,...,xnsm
pf1,...,fnq

and

β|t“0 is the Scheja–Storch form on Q0 associated to F |t“0 “ f . Likewise, β|t“c is

the Scheja–Storch form on Qc associated to f̃ . Since Qc has finite k-dimension, it is

an Artinian ring and thus has finitely many maximal ideals. Each of these maximal

ideals corresponds to a zero of f̃ . Let Z Ă An
k be the set of points corresponding to

the maximal ideals of Qc. It follows from e.g. [12, Lemma 4.7 and Theorem 5.1] that

β|t“c is isomorphic to
ř

qPZ degA1

q pf̃q, which gives us (ii).

Remark 2.29. Similar to Theorem 2.28, Kass and Wickelgren have used Harder’s

theorem to study the A1-degree in families [36, 37]. In their work, they show (and

utilize) that the sum of local A1-degrees over a given fiber is independent of the fiber

chosen. Our approach describes how to remove other elements of the fiber over 0

in order to compute the local A1-degree at a single point (instead of over the whole

fiber) by working in families.
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2.2 Global fixed counts

The classical Poincaré–Hopf theorem calculates the Euler characteristic of a compact

differentiable manifold as a sum of local indices over the vanishing locus of any vector

field with only isolated zeros [35]. As a motivic analog, one can define the Euler class

epV, σq of a relatively orientable vector bundle V Ñ X over a proper scheme with

respect to a section σ : X Ñ V with isolated zeros by

epV, σq :“
ÿ

pPσ´1p0q

indp σ.

Bachmann and Wickelgren proved that this notion of Euler class is independent of

σ [2, Theorem 1.1]. In particular, while the specific local contributions indp σ usually

depend on the section σ (which represents an instance of the enumerative problem),

the global sum of local contributions is fixed and independent of σ. It is thus desirable

to be able to compute Euler classes in motivic homotopy theory. We give a brief

survey of the literature on this subject.

If all zeros of a section σ : X Ñ V lie in a single affine patch An – U Ď X, then

the Euler class epV q can be computed as a global A1-degree via the multivariate

Bézoutian [12]. Frequently, epV q is a multiple of the hyperbolic form H. This is

explained by Srinivasan–Wickelgren (who build on the work of Levine and Fasel):

if V has an odd rank direct summand (or e.g. V itself has odd rank), then epV q

is hyperbolic [62, Proposition 12]. Levine–Raksit and Bachmann–Wickelgren con-

struct a motivic Euler class in terms of coherent duality [2, 42], which is shown by

Bachmann–Wickelgren to agree with the Poincaré–Hopf motivic Euler class.

Suppose X is smooth and proper over Zr1⁄2s, and let Vk Ñ X be the base change

of a relatively orientable vector bundle to a field k of characteristic not 2. Let eC and

eR be the complex and real Euler numbers, respectively, of V Ñ X. In a particularly

interesting result, Bachmann and Wickelgren prove that there are only two options
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for epVkq: it is either eC`eR
2
x1y ` eC´eR

2
x´1y or eC`eR

2
x1y ` eC´eR

2
x´1y ` x2y ´ x1y [2,

Theorem 5.11]. This can even be sharpened with recent breakthroughs in Hermitian

K-theory over Z. Using [13], Bachmann–Wickelgren show that if X is smooth and

proper over Z, then

epVkq “
eC ` eR

2
x1y `

eC ´ eR
2

x´1y

for any field k, regardless of char k. Strikingly, while the fixed count epVkq P GWpkq

carries arithmetic information relative to the field k, this data is completely governed

by topological information over R and C. This also illustrates that fixed counts in A1-

enumerative geometry are often simple, in contrast with the potentially complicated

nature of the local contributions comprising any given fixed count [12,57].

Tacit in this entire discussion is the assumption that the zero locus of σ is iso-

lated. Many interesting enumerative problems involve excess or residual intersec-

tions. The Scheja–Storch bilinear pairing was generalized by Eisenbud and Ulrich to

this setting [28], and Bachmann–Wickelgren relate the work of Eisenbud–Ulrich to

A1-enumerative problems involving excess and residual intersections [3].
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3

Bézout’s Theorem

In this chapter, we study the intersections of n hypersurfaces in projective n-space

over an arbitrary perfect field k. Classically, Bézout’s theorem addresses such inter-

sections over an algebraically closed field.

Theorem 3.1 (Bézout’s theorem). Fix an algebraically closed field k. Let f1, . . . , fn

be hypersurfaces in Pn, and let di be the degree of fi for each i. Assume that f1, . . . , fn

have no common components, so that f1 X . . . X fn is a finite set. Then, summing

over the intersection points of f1, . . . , fn, we have

ÿ

points

ippf1, . . . , fnq “ d1 ¨ ¨ ¨ dn, (3.1)

where ippf1, . . . , fnq is the intersection multiplicity of f1, . . . , fn at p.

Working over an algebraically closed field is necessary for this result.1 Indeed,

consider the intersection of a conic and a cubic shown in Figure 3.1. Over any field,

1 Over non-algebraically closed fields, one may modify Equation 3.1 by multiplying the intersection
multiplicity ippf1, . . . , fnq by the degree of the residue field rkppq : ks as described in [31, Proposition
8.4]. However, since each point p splits into rkppq : ks points in the algebraic closure of k, this simply
counts the geometric intersection points as in Theorem 3.1.
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these two curves do not intersect on the line at infinity. Over R, these two curves

intersect exactly twice, with intersection multiplicity one at each of the intersection

points. This number falls short of the six complex intersection points, even when

counted with multiplicity. The results of this chapter include a version of Bézout’s

theorem over R, which will impose a relation on the gradients of these curves at their

intersection points.

Figure 3.1: A conic and a cubic over R.

Our approach to generalize Bézout’s theorem follows the general philosophy

of [37]. Any section σ of the vector bundle Od1,...,dn :“
Àn

i“1 Opdiq Ñ Pn determines

an n-tuple pf1, . . . , fnq of homogeneous polynomials of degree d1, . . . , dn, respectively.

The vanishing of each fi gives a hypersurface of Pn, which we will also denote fi. The

section σ vanishes precisely when f1, . . . , fn intersect, which suggests a connection

to Bézout’s theorem.

A1-homotopy theory provides a powerful tool with which to study such sections.

Morel developed an A1-homotopy theoretic analog of the local Brouwer degree [52],

which Kass and Wickelgren used to study an Euler class e of vector bundles in

the context of enumerative algebraic geometry [37].2 When Od1,...,dn is relatively

orientable over Pn (that is, when
řn
i“1 di ” n ` 1 mod 2), we compute epOd1,...,dnq,

which gives an equation involving the sum of local A1-degrees of a generic section

2 There are various related Euler classes in arithmetic geometry, such as those appearing in
[1, 4, 29,33,41,52]. See [37, Section 1.1] for a discussion.

33



at its points of vanishing. We also give a geometric description of the local A1-

degree for transverse sections of Od1,...,dn . This geometric information, paired with

the equation coming from epOd1,...,dnq, generalizes Bézout’s theorem. When Od1,...,dn

is not relatively orientable over Pn (that is, when
řn
i“1 di ı n ` 1 mod 2), we give

a relative orientation of Od1,...,dn relative to the divisor D “ tx0 “ 0u in the sense of

Larson and Vogt [40]. This allows us to compute the local degree of sections that do

not vanish on D. However, we do not address the question of Euler classes in the

non-relatively orientable case.

The local A1-degree is valued in the Grothendieck–Witt group GWpkq of sym-

metric, non-degenerate bilinear forms over k, so our enriched version of Bézout’s

theorem will be an equality in GWpkq. We assume throughout this chapter that k

is a perfect field, which ensures that all algebraic extensions of k are separable.

Theorem 3.2. Let
řn
i“1 di ” n ` 1 mod 2, and let f1, . . . , fn be hypersurfaces of

Pn of degree d1, . . . , dn that intersect transversely. Given an intersection point p

of f1, . . . , fn, let Jppq be the signed volume of the parallelpiped determined by the

gradient vectors of f1, . . . , fn at p. Then summing over the intersection points of

f1, . . . , fn, we have

ÿ

points

Trkppq{kxJppqy “
d1 ¨ ¨ ¨ dn

2
¨H, (3.2)

where Trkppq{k : GWpkppqq Ñ GWpkq is given by post-composing with the field trace.

Taking the rank, signature, and discriminant of the Equation 3.2 gives us Bézout’s

theorem over C,R, and Fq, respectively. We apply similar techniques to also study

Bézout’s theorem over Cpptqq and Q. Kass and Wickelgren showed that Morel’s local

A1-degree is equivalent to a class of Eisenbud, Levine, and Khimshiashvili [36], which

allows us to make the necessary computations without explicitly using A1-homotopy

theory. This work fits into the growing field of A1-enumerative geometry, which is
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the enrichment of classical theorems from enumerative geometry via A1-homotopy

theory. Related results include [2, 6, 36,37,40,41,43,62,65].

The layout of the chapter is as follows. In Section 3.1, we introduce notation

and conventions for the chapter. In Section 3.2, we recall definitions and make

computations about relative orientability, which is necessary for computations and

proofs in Sections 3.3 and 3.4. In Section 3.3, we calculate the Euler class, and we

discuss the geometric information carried by the local degree in Section 3.4. Finally,

we discuss Bézout’s theorem over C, R, finite fields of odd characteristic, Cpptqq, and

Q in Section 3.5. To illustrate the sort of obstructions that Bézout’s theorem over

Q provides, we show in Example 3.45 that if a line and a conic in P2
Q meet at two

distinct points, and if the area of the parallelogram determined by the normal vectors

to these curves at one of the intersection points is a non-square integer m ‰ ´1, then

the area of the parallelogram at the other intersection point cannot be an integer

prime to m.

3.0.1 Related work

Chen [18, Section 3] studies Bézout’s theorem in P2n
R as a consequence of a generalized

Bézout’s theorem over C [18, Theorem 2.1]. In particular, Chen discusses that over

R, intersection multiplicities can be negative numbers [18, Remark 2.2] and shows

that if f, g P R2 meet transversely at p, then the R-intersection multiplicity of f

and g at p is the sign of the Jacobian of f and g [18, Proposition 3.1]. Our work in

Section 3.5.2 generalizes these latter observations.

3.1 Notation and conventions

Throughout this chapter, we let k be a perfect field. We denote projective n-space

over k by Pnk “ Projpkrx0, . . . , xnsq. When the base field is clear from context, we

may write Pn instead of Pnk . Given a rank r vector bundle E, the determinant bundle
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of E is the r-fold wedge product

detE “ E ^ ¨ ¨ ¨ ^ E
loooooomoooooon

r times

.

3.1.1 Standard cover

Let U0, . . . , Un be the standard affine open subspaces of Pn given by Ui “ trp0:¨ ¨ ¨:pns P

Pn : pi ‰ 0u. Let ϕ0, . . . , ϕn be the standard local coordinates of U0, . . . , Un, where

ϕi : Ui Ñ An is given by ϕiprp0 : ¨ ¨ ¨ : pnsq “ p
p0
pi
, . . . , pi´1

pi
, pi`1

pi
, . . . , pn

pi
q. We call

tpUi, ϕiqu the standard cover of Pn.

3.1.2 Twisting sheaves

We denote the twisting sheaf OPnpdtx0 “ 0uq by Opdq. Under this definition, we

remark that Opdq is locally trivialized by p xi
x0
qd over Ui. If d ě 0, the vector space

of global sections H0pPn,Opdqq is isomorphic to the vector space of homogeneous

polynomials in krx0, . . . , xns of degree d. Indeed, given h P krx0, . . . , xnspdq, we have

a global section σ of Opdq, which is given in the local trivializations by σ|Ui
“ h{xdi .

In this chapter, we will often consider global sections of Od1,...,dn :“
Àn

i“1 Opdiq.

By the above identification of H0pPn,Opdqq and krx0, . . . , xnspdq, we may thus write

a section as σ “ pf1, . . . , fnq, where fi P krx0, . . . , xnspdiq.

3.2 Relative orientations

Let f1, . . . , fn be hypersurfaces in Pn. Bézout’s theorem equates a fixed value with

the sum (over the intersection locus of f1, . . . , fn) of some geometric information

about f1, . . . , fn at each intersection point. Classically (that is, over an algebraically

closed field), the fixed value is the product of the degrees of each fi, and the geometric

information at each intersection point is the intersection multiplicity of f1, . . . , fn.

Over an arbitrary perfect field, an A1-homotopy theoretic Euler class will give us

36



a particular bilinear form as our fixed value, and the local A1-degree will give us

our geometric information. We compute the Euler class in Section 3.3, and we

discuss the local degree in Section 3.4. In this section, we recall definitions and make

computations that are required for Sections 3.3 and 3.4. We first start with some

definitions.

Definition 3.3. [37, Definition 16] A relative orientation of a vector bundle V on

a scheme X is a pair pL, jq of a line bundle L and an isomorphism j : Lb2 Ñ

Hompdet T X, detV q, where T X Ñ X is the tangent bundle. We say that V

is relatively orientable if V has a relative orientation. Moreover, on an open set

U Ď X, a section of Hompdet T X, detV q is called a square if its image under

H0pU,Hompdet T X, detV qq – H0pU,Lb2q is a tensor square of an element inH0pU,Lq.

The relative orientability of the vector bundle Od1,...,dn Ñ Pn depends on d1, . . . , dn,

and n in the following way.

Proposition 3.4. The vector bundle Od1,...,dn Ñ Pn is relatively orientable if and

only if
řn
i“1 di ” n` 1 mod 2.

Proof. Since detOd1,...,dn –
Ân

i“1 Opdiq, we have that

Hompdet T Pn, detOd1,...,dnq – detOd1,...,dn b pdet T Pnq_

– Op´n´ 1`
řn
i“1diq.

Thus Op´n´1`
řn
i“1 diq is a square if and only if ´n´1`

řn
i“1 di is even, in which

case Op´n´ 1`
řn
i“1 diq – Opp´n´ 1`

řn
i“1 diq{2q

b2.

Remark 3.5. We note that if
řn
i“1 di ” n`1 mod 2, then at least one of d1, . . . , dn

must be even. Indeed, suppose all of d1, . . . , dn are odd. Then di ” 1 mod 2, so
řn
i“1 di ” n mod 2.

When V is not relatively orientable, we have the following definition of Larson

and Vogt.
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Definition 3.6. [40, Definition 2.2] A relative orientation relative to an effective

divisor D of a vector bundle V on a smooth projective scheme X is a pair pL, jq of

a line bundle L and an isomorphism j : Lb2 Ñ Hompdet T X, detV q bOpDq.

In A1-homotopy theory, one frequently uses the Nisnevich topology. For this

chapter, we will only need the following definitions.

Definition 3.7. [37, Definition 17] Let X be a scheme of dimension n, and let

U Ď X be an open neighborhood of a point p P X. An étale map ϕ : U Ñ An
k

is called Nisnevich coordinates about p if ϕ induces an isomorphism between the

residue field of p and the residue field of ϕppq.

Definition 3.8. [37, Definition 19] Let V be a vector bundle on a scheme X, and let

U Ď X be an open affine subset. Given Nisnevich coordinates ϕ on U and a relative

orientation pL, jq of V , we have a distinguished basis element of det T X|U . A local

trivialization of V |U is called compatible with the Nisnevich coordinates and relative

orientation if the element of Hompdet T X|U , detV |Uq taking the distinguished basis

element of det T X|U to the distinguished basis element of detV |U (determined by

the specified local trivialization of V |U) is a square (in the sense of Definition 3.3).

We can generalize the above definition to discuss compatibility in the case of a

relative orientation relative to an effective Cartier divisor.

Definition 3.9. Let V be a vector bundle on a smooth projective scheme X, and

let U Ď X be an open affine subset. Given Nisnevich coordinates ϕ on U and a

relative orientation pL, jq relative to an effective Cartier divisor D, we have a distin-

guished basis element of det T X|U . A local trivialization of V |U is called compatible

with the Nisnevich coordinates and relative orientation relative to D if α b 1D is a

square, where 1D is the canonical section of OpDq [63, Definition 01WX (2)] and α

is the element of Hompdet T X|U , detV |Uq taking the distinguished basis element of
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det T X|U to the distinguished basis element of detV |U (determined by the specified

local trivialization of V |U).

We will show that a twist of the standard cover tpUi, ϕiqu of Pn (see Section 3.1.1)

gives Nisnevich coordinates. This twist will be denoted tpUi, ϕ̃iqu, with ϕ̃0 “ ϕ0 and

ϕ̃iprp0 : ¨ ¨ ¨ : pnsq “ pp´1qi p0
pi
, . . . , pi´1

pi
, pi`1

pi
, . . . , pn

pi
q.

The reason for working with these twisted coordinates instead of the standard coor-

dinates is to ensure compatibility with the local trivializations of Od1,...,dn , as shown

in Lemmas 3.12 and 3.13. We will also describe the distinguished basis elements of

det T Pn|Ui
and detOd1,...,dn |Ui

coming from ϕ̃i and the local trivialization given in

Section 3.1.2, respectively.

Proposition 3.10. The twisted covering maps ϕ̃i : Ui Ñ An
k are Nisnevich co-

ordinates. Moreover, ϕi determines the distinguished basis element p´1qi ¨ Bi :“

p´1qi
Ź

j‰i
B

Bpxj{xiq
of det T Pn|Ui

with transition functions det gij :“ p´1qi`jp xi
xj
qn`1.

Proof. By construction, ϕ̃i : Ui Ñ An
k is an isomorphism, so ϕ̃i is étale and induces

an isomorphism kppq – kpϕppqq for all p P Ui. Recall that T An has the standard

trivializations t B

Bx1
, . . . , B

Bxn
u. Since ϕ̃i induces an isomorphism T Pn|Ui

– T An, we

may pull back the standard trivializations T An Ñ An by ϕ̃i to obtain the twisted

trivializations tp´1qiB0{i, . . . , Bpi´1q{i, Bpi`1q{i, . . . , Bn{iu, where Bj{i “
B

Bpxj{xiq
. It follows

that det T Pn|Ui
is trivialized by p´1qi

Ź

j‰i Bj{i. Finally, we consider the transition

functions det gij : det T Pn|Uj
Ñ det T Pn|Ui

. These transition functions will come

from the transition functions gij : T Pn|Uj
Ñ T Pn|Ui

. A few calculus computations

show us that, for k ‰ i, j, we have

Bk{i “
xi
xj
¨ Bk{j,

Bj{i “ ´p
xi
xj
q
2
¨ Bi{j ´

ÿ

k‰i,j

xixk
x2j
¨ Bk{j.
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Thus for fixed i, j, we have
Ź

k‰i Bk{i “ ´p
xi
xj
qn`1

Ź

k‰j Bk{j. The trivializations

p´1qi ¨Bi :“ p´1qi
Ź

j‰i Bj{i of det T Pn|Ui
are local trivializations of det T Pn compati-

ble with the transition functions det gij “ p´1qi`jp xi
xj
qn`1. In other words, det T Pn|Ui

is one-dimensional with p´1qi ¨ Bi as its distinguished basis element.

Proposition 3.11. The local trivialization p xi
x0
qd1 ‘ ¨ ¨ ¨ ‘ p

xi
x0
qdn of Od1,...,dn |Ui

deter-

mines the distinguished basis element p xi
x0
qd1`...`dn of detOd1,...,dn |Ui

with transition

functions dethij :“ p xi
xj
qd1`...`dn.

Proof. Since Opdq|Ui
is trivialized by p xi

x0
qd, the vector bundle Od1,...,dn |Ui

is trivialized

by p xi
x0
qd1 ‘ ¨ ¨ ¨ ‘ p

xi
x0
qdn . The transition functions hij : Opdq|Uj

Ñ Opdq|Ui
are given

by p xi
xj
qd, so the transition functions ‘hij : Od1,...,dn |Uj

Ñ Od1,...,dn |Ui
are given by

p
xi
xj
qd1‘¨ ¨ ¨‘ p

xi
xj
qdn . Finally, recall that detOd1,...,dn – Opd1qb ¨ ¨ ¨bOpdnq – Opd1`

. . . ` dnq. Thus detOd1,...,dn |Ui
is trivialized by p xi

x0
qd1 b ¨ ¨ ¨ b p

xi
x0
qdn – p

xi
x0
qd1`...`dn ,

and the transition functions dethij : detOd1,...,dn |Uj
Ñ detOd1,...,dn |Ui

are given by

p
xi
xj
qd1 b ¨ ¨ ¨ b p

xi
xj
qdn – p

xi
xj
qd1`...`dn .

3.2.1 Relatively orientable case

Let N “ ´n ´ 1 `
řn
i“1 di, and assume N ” 0 mod 2, so that Od1,...,dn Ñ Pn is

relatively orientable by Proposition 3.4. We will give a relative orientation of Od1,...,dn

and show that the local trivializations of Od1,...,dn discussed in Proposition 3.11 are

compatible with this relative orientation and the Nisnevich coordinates coming from

our twisted cover tpUi, ϕ̃iqu.

For our relative orientation, we give an isomorphism

ψ : OpN{2qb2
Ñ Hompdet T Pn, detOd1,...,dnq

by defining ψ|Ui
for each i. Since OpN{2qb2|Ui

is generated by p xi
x0
qN{2 b p

xi
x0
qN{2,

it suffices to define αi :“ ψ|Ui
pp
xi
x0
qN{2 b p

xi
x0
qN{2q, which is a homomorphism from
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det T Pn|Ui
to detOd1,...,dn |Ui

. These are both one-dimensional as shown in Proposi-

tions 3.10 and 3.11, so we may define αi to be the homomorphism taking p´1qi ¨ Bi to

p
xi
x0
qd1`...`dn . To show that ψ is well-defined, we need to show that on UiXUj, the maps

ψ|Ui
and ψ|Uj

differ by the transition function p xi
xj
qN{2 b p

xi
xj
qN{2 : OpN{2qb2|Uj

Ñ

OpN{2qb2|Ui
. In other words, we need to show that αi “ p

xi
xj
qNαj on Ui X Uj. To

this end, let det gij and dethij be the transition functions given in Propositions 3.10

and 3.11 and note that

αi ˝ det gijpp´1qj ¨ Bjq “ αipp´1qip
xj
xi
q
n`1

¨ Biq

“ p
xj
xi
q
n`1
p
xi
x0
q
d1`...`dn

“ p
xj
xi
q
n`1 dethijp

xj
x0
q
d1`...`dn

“ p
xi
xj
q
´n´1

p
xi
xj
q
d1`...`dnp

xj
x0
q
d1`...`dn

“ p
xi
xj
q
Nαjpp´1qj ¨ Bjq.

Thus αi “ p
xi
xj
qNαj, as desired. In fact, we have proved the following lemma.

Lemma 3.12. The local trivializations p xi
x0
qd1‘¨ ¨ ¨‘p

xi
x0
qdn of Od1,...,dn |Ui

are compati-

ble with the Nisnevich coordinates tpUi, ϕ̃iqu and the relative orientation pOpN{2q, ψq

of Od1,...,dn Ñ Pn.

Proof. By construction, αi is the element of Hompdet T Pn|Ui
, detOd1,...,dn |Ui

q taking

the distinguished basis element p´1qi ¨ Bi of det T Pn|Ui
to the distinguished basis

element p xi
x0
qd1`...`dn of detOd1,...,dn |Ui

. The relative orientation pOpN{2q, ψq was built

such that ψ|Ui
pp
xi
x0
qN{2 b p

xi
x0
qN{2q “ αi, so αi is a tensor square in OpN{2qb2|Ui

.

3.2.2 Non-relatively orientable case

Let N “ ´n´ 1`
řn
i“1 di, and assume N ı 0 mod 2. In this case, Od1,...,dn Ñ Pn is

not relatively orientable, since there is no line bundle of the form OpN{2q when N{2
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is not an integer. However, we will show that Od1,...,dn Ñ Pn is relatively orientable

relative to the effective Cartier divisor D “ tx0 “ 0u of Pn. Figuratively, this divisor

gives us a geometric horizon relative to which we can orient our hypersurfaces in

projective space.

We have chosen the divisor D “ tx0 “ 0u so that the local trivializations of OpDq

work nicely with our other twisting sheaves. In particular, we have

Hompdet T Pn, detOd1,...,dnq bOpDq – OpN ` 1q.

Since N `1 ” 0 mod 2, the bundle Hompdet T Pn, detOd1,...,dnqbOpDq is the tensor

square of the line bundle OpN`1
2
q. We may thus apply the work of Section 3.2.1 to

get a relative orientation pOpN`1
2
q, ψ̃q of Od1,...,dn relative to the divisor D, as well as

local trivializations of Od1,...,dn compatible with our Nisnevich coordinates tpUi, ϕ̃iqu

and our relative orientation pOpN`1
2
q, ψ̃q.

Lemma 3.13. The local trivialization p xi
x0
qd1‘¨ ¨ ¨‘p

xi
x0
qdn of Od1,...,dn |Ui

are compatible

with the Nisnevich coordinates tpUi, ϕ̃iqu and the relative orientation pOpN`1
2
q, ψ̃q,

where ψ̃ is given locally by ψ̃|Ui
pp
xi
x0
qpN`1q{2 b p

xi
x0
qpN`1q{2q “ αi b

xi
x0

.

Proof. The canonical section 1D of OpDq is locally given by xi
x0

. By construction,

αipp´1qi ¨ Biq b
xi
x0
“ p

xi
x0
qd1`...`dn`1, so we have αi b

xi
x0
“ p

xi
xj
qN`1αj b

xj
x0

on Ui X Uj

by Lemma 3.12. Thus the maps ψ̃|Ui
and ψ̃|Uj

differ by the transition function

p
xi
xj
qpN`1q{2 b p

xi
xj
qpN`1q{2 : OpN`1

2
qb2|Uj

Ñ OpN`1
2
qb2|Ui

, so the relative orientation

pOpN`1
2
q, ψ̃q relative to the divisor D is well-defined. This relative orientation was

constructed such that αi b
xi
x0

is a square.

3.3 Euler class

In Section 3.2, we gave a relative orientation (possibly relative to an effective Cartier

divisor) of Od1,...,dn Ñ Pn, as well as local trivializations of this bundle compatible
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with the given relative orientation and our twisted Nisnevich coordinates. This data

allows us to compute the local degree of sections of Od1,...,dn . We can also define

an Euler class of this vector bundle, paired with a given section, by computing the

sum of local degrees of the section. When this sum does not depend on our choice

of section, the Euler class gives us an invariant associated to the vector bundle at

hand. This invariant will correspond to the enumerative fixed value discussed at the

beginning of Section 3.2.

We first discuss how to compute the local degree of a section. Let V be a vector

bundle on a scheme X of dimension n, and suppose that we have Nisnevich coordi-

nates, a relative orientation (possibly relative to an effective Cartier divisor) of V , and

compatible local trivializations of V . If σ is a section of V with isolated zero p P X,

then take an open affine U Ď X containing p. Under the compatible local trivializa-

tion of V |U , the section σ|U becomes an n-tuple of functions pf1, . . . , fnq : U Ñ An
k .

If ϕ : U Ñ An
k are the aforementioned Nisnevich coordinates, and if ϕ|U is an iso-

morphism, then pf1, . . . , fnq ˝ ϕ
´1 is an endomorphism of An

k . (In general, ϕ|U may

not be an isomorphism, in which case we cannot write the section σ as a polynomial

map. We can, however, write our section as a polynomial map with a negligible error

term. See [37, Lemmas 24–28] for details.)

We may thus compute the local degree of this endomorphism as outlined in [36,

Table 1]. Kass and Wickelgren [37, Corollary 29] also show that given a relative

orientation of V , the Euler class e does not depend on the choice of Nisnevich

coordinates on X with compatible trivialization of V . This allows us to define

degp σ “ degϕppqpf1, . . . , fnq ˝ ϕ
´1. Note that we must choose our neighborhood

U sufficiently small, so that ϕ´1pϕppqq “ tpu.

Definition 3.14. [37, Definition 33] Given a relatively oriented (relative to an

effective Cartier divisor D) vector bundle V Ñ X and a section σ with isolated zero
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locus (such that σ does not vanish on D), define the Euler number of pV, σq to be

epV, σq “
ÿ

pPσ´1p0q

degp σ.

When epV, σq does not depend on our choice of section σ, we will simply denote

this by epV q. It will turn out that epOd1,...,dnq does not depend on our choice of

section when Od1,...,dn Ñ Pn is relatively orientable. Let N “ ´n ´ 1 `
řn
i“1 di,

and assume N ” 0 mod 2 so that Od1,...,dn Ñ Pn is relatively orientable. We will

show that epOd1,...,dn , σq does not depend on our choice of section. First, we need the

following proposition.

Proposition 3.15. Let char k “ 0. Let n ě 1. If pf1, . . . , fi´1q is a regular sequence

in krx0, . . . , xns for 1 ď i ď n, then

Zi :“ tfi P H
0
pPnk ,Opdiqq : pf1, . . . , fi´1, fiq is not a regular sequenceu

has k-codimension at least 2 in H0pPnk ,Opdiqq.

Proof. By definition of regular sequences, fi is not a zero divisor in krx0,...,xns
pf1,...,fi´1q

if and

only if pf1, . . . , fi´1, fiq is a regular sequence in krx0, . . . , xns. The set of zero divisors

in krx0,...,xns
pf1,...,fi´1q

is given by the union of the minimal prime ideals associated to the ideal

I :“ pf1, . . . , fi´1q. Moreover, since krx0, . . . , xns is Noetherian, there are finitely

many minimal prime ideals associated to I. Given a minimal prime p associated to

I, let pdi denote the degree di part of p, considered as a k-vector space. If

codimk pdi :“ dimkH
0
pPnk ,Opdiqq ´ dimk pdi ě 2

for any minimal prime p associated to I, then Zi is a finite union of spaces of codimen-

sion at least 2. It will then follow that Zi has codimension at least 2 in H0pPnk ,Opdiqq.

Let p be a minimal prime ideal associated to I. Krull’s height theorem implies

that p has height at most i´1, so p contains at most i´1 linear forms that are linearly
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independent over k. Suppose that codimk pdi ă 2. Then dimk pdi ě
`

n`di
di

˘

´ 1. If

dimk pdi “
`

n`di
di

˘

, then pdi “ H0pPnk ,Opdiqq and hence xdi0 , . . . , x
di
n P pdi . Since p is

a prime ideal, it follows that x0, . . . , xn P p, so p contains n` 1 ą i´ 1 linear forms

that are linearly independent.

We may thus assume that dimk pdi “
`

n`di
di

˘

´ 1. Let N “
`

n`di
di

˘

, and con-

sider the Veronese embedding vdi : Pnk Ñ PN´1
k , where Pnk – PpH0pPnk ,Op1qqq

and PN´1
k – PpH0pPnk ,Opdiqqq. Under the Veronese embedding, the image of ` P

PpH0pPnk ,Op1qqq is vdip`q “ `di P PpH0pPnk ,Opdiqqq. Since pdi is a codimension 1

subspace of H0pPnk ,Opdiqq by assumption, we have an isomorphism Pppdiq – H for

some hyperplane H Ă PN´1
k . The image vdipPnkq of the Veronese embedding is not

contained in any hyperplane, so the hyperplane section vdipPnkq X H has dimension

dim vdipPnkq ´ 1. Since the Veronese embedding is an isomorphism onto its image, it

follows that vdipPnkq XH “ vdipXq for some X Ă Pnk of dimension n´ 1. This allows

us to pick general points p1, . . . , pn P X such that tp1, . . . , pnu is not contained in

any pn´ 2q-plane. Thus if `j P H
0pPnk ,Op1qq is any lift of pj under

H0
pPnk ,Op1qq Ñ PpH0

pPnk ,Op1qqq – Pnk ,

then `1, . . . , `n are linearly independent over k. Moreover, since vdippjq P H, we have

that `dij P pdi . Since p is a prime ideal, it follows that `1, . . . , `n P p, so p contains

n ą i´ 1 linear forms that are linearly independent. By contradiction, we conclude

that codimk pdi ě 2.

We can now prove that epOd1,...,dn , σq does not depend on our choice of section.

Lemma 3.16. The Euler number epOd1,...,dn , σq is independent of the choice of sec-

tion σ.

Proof. This follows from [2, Theorem 1.1]. However, we will also give a more direct

proof of this lemma assuming char k “ 0. Given a section σ P H0pPnk ,Od1,...,dnq,
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let Zpσq “ tp P Pn : σppq “ 0u be its zero locus. We will show that tσ :

Zpσq is not isolatedu has k-codimension at least 2 in H0pPnk ,Od1,...,dnq. This will

show that

H0
pPnk ,Od1,...,dnqztσ : Zpσq is not isolatedu

is connected by sections in the sense of [37, Definition 37]. As a result, [37, Corollary

38] will imply that epOd1,...,dn , σq is independent of σ.

The zero locus Zpσq is isolated if and only if pf1, . . . , fnq is a regular sequence, so

Zpσq is not isolated if and only if fi is a zero divisor in krx0,...,xns
pf1,...,fi´1q

for some i. Note

that H0pPnk ,Od1,...,dnq “
Àn

i“1H
0pPnk ,Opdiqq. Let Zi Ď H0pPnk ,Od1,...,diq be the set of

all sections pf1, . . . , fiq such that pf1, . . . , fi´1q is a regular sequence and fi is a zero

divisor in krx0,...,xns
pf1,...,fi´1q

. Then the set of all non-regular sequences pf1, . . . , fnq is given

by

n
ď

i“1

pZi ‘H
0
pPnk ,Odi`1,...,dnqq.

Proposition 3.15 implies that Zi has codimension at least 2 in H0pPnk ,Od1,...,diq. It

follows that Zi ‘ H0pPnk ,Opdi`1qq has codimension at least 2 in H0pPnk ,Od1,...,di`1
q.

Iterating this process, we have that Zi ‘H
0pPnk ,Odi`1,...,dnq has codimension at least

2 in H0pPnk ,Od1,...,dnq for i “ 1, . . . , n. The set of all non-regular sequences is thus

a finite union of sets of codimension at least 2, so tσ : Zpσq is not isolatedu has

codimension at least 2.

We may now compute epOd1,...,dnq.

Theorem 3.17. We have epOd1,...,dnq “
d1¨¨¨dn

2
¨H.

Proof. By Lemma 3.16, epOd1,...,dnq is independent of choice of section. Let σ “

pxd11 , . . . , x
dn
n q. The zero locus of σ consists only of the point p “ r1 : 0 : ¨ ¨ ¨ : 0s,

so epOd1,...,dnq “ degp σ. Since p P U0, our twisted cover and local trivialization of
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Od1,...,dn on U0 tell us that degp σ “ degp0,...,0qpp
x1
x0
qd1 , . . . , pxn

x0
qdnq. We may rewrite

this local degree as a product of local degrees, yielding degp σ “
śn

i“1 deg0 x
di . By

Remark 3.5, at least one of d1, . . . , dn is even. Since

deg0 ax
d
“

#

d´1
2
¨H` xay d odd,

d
2
¨H d even,

we have that

degp σ “
ź

di even

`

di
2
¨H

˘

¨
ź

di odd

`

di´1
2
¨H` x1y

˘

“

ˆś

even di
2

¨H
˙ˆ

p
ś

odd diq ´ 1

2
¨H` x1y

˙

“
d1 ¨ ¨ ¨ dn

2
¨H.

Alternately, one can note that degp σ will be of the form ax1y ` bx´1y for some

a, b P Z. The values of a and b can then be determined by separately considering the

rank and signature of deg0 x
di for 1 ď i ď n. Either approach gives us epOd1,...,dnq “

d1¨¨¨dn
2

¨H.

Remark 3.18. Theorem 3.17 also follows from [41, Theorem 7.1] as described in [62,

Proposition 19].

In Section 3.4, we give a geometric interpretation of degppf1, . . . , fnq. Paired with

Theorem 3.17, this will prove Theorem 3.2.

3.4 Formulas and geometric interpretations for the local degree

In Section 3.3, we computed the Euler class of the vector bundle Od1,...,dn Ñ Pn.

Roughly speaking, this Euler class equals the sum of local degrees over the inter-

section locus of f1, . . . , fn. Once we provide a geometric interpretation of the local

degree degppf1, . . . , fnq, we will have an equation that counts geometric information

47



concerning the intersection points of f1, . . . , fn. This enumerative geometric equation

will constitute our enriched version of Bézout’s theorem.

3.4.1 Intersection multiplicity is the rank of the local degree

We set out to prove that the intersection multiplicity ippf1, . . . , fnq of f1, . . . , fn at p

is the rank of the local degree degppf1, . . . , fnq. We begin with a brief discussion of

intersection multiplicity.

Definition 3.19. [61, Definition 4.1] Given p P Pn and hypersurfaces f1, . . . , fn, the

intersection multiplicity of f1, . . . , fn at p is given by

ippf1, . . . , fnq “ dimkOPn,p{pf1, . . . , fnq.

We next prove that this intersection multiplicity agrees with the rank of the local

degree degppf1, . . . , fnq. This will follow from the fact that both the intersection

multiplicity and the local degree are given by local computations.

Proposition 3.20. Let f1, . . . , fn be hypersurfaces in Pn that are all non-singular

at a common intersection point p. Moreover, assume that f1, . . . , fn do not share a

common component, so that f1 X ¨ ¨ ¨ X fn is a finite set. Then

rank degppf1, . . . , fnq “ ippf1, . . . , fnq.

Proof. Let U be an affine neighborhood of p with local coordinates ϕ : U Ñ An.

An algorithmic method for computing degppf1, . . . , fnq is outlined in [36, Table 1].

In this method, we have that rank degppf1, . . . , fnq “ dimk ϕ˚pOU,p{pf1, . . . , fnqq.

(In the notation of [37], ϕ˚pOU,p{pf1, . . . , fnqq corresponds to Qp. The assump-

tion that f1 X . . . X fn be a finite set ensures that p is an isolated zero, so that

dimkQp is finite.) First, we have that OPn,p{pf1, . . . , fnq is isomorphic (as a k-

algebra) to OU,p{pf1, . . . , fnq. Since ϕ : U Ñ An is an isomorphism, we also have

that OU,p{pf1, . . . , fnq and ϕ˚pOU,p{pf1, . . . , fnqq are isomorphic as k-algebras. Thus

rank degppf1, . . . , fnq “ ippf1, . . . , fnq, as desired.
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3.4.2 Transverse intersections

When the hypersurfaces f1, . . . , fn intersect transversely at a point p, the local degree

degppf1, . . . , fnq has a geometric interpretation in terms of the gradient directions of

each fi at p. Intuitively, f1, . . . , fn intersect transversely at p as subschemes of Pn if

their tangent spaces at p overlap as little as possible. This idea can be made rigorous

by the following definition.

Definition 3.21. [25, p. 18] The subschemes f1, . . . , fn of Pn intersect transversely

at p if each fi is smooth at p and if codimp
Ş

i Tpfiq “
ř

i codimTpfi, where codimTpfi

refers to the codimension of Tpfi as a subspace of the vector space TpPnk – kppqn.

Transverse intersections of n hypersurfaces in Pn are completely characterized by

their intersection multiplicity.

Proposition 3.22. The hypersurfaces f1, . . . , fn of Pnk intersect transversely at a

point p if and only if ippf1, . . . , fnq “ rkppq : ks. In particular, if p is a k-rational

point, then f1, . . . , fn intersect transversely at p if and only if ippf1, . . . , fnq “ 1.

Proof. Let mp be the maximal ideal of krx0, . . . , xns corresponding to the point p.

Since the intersection multiplicity ippf1, . . . , fnq is locally defined, we work in the local

ring krx0, . . . , xnsmp “ OPn,p. The polynomials f1, . . . , fn are local parameters at p in

the sense of [61, Section 2.1] if and only if pf1, . . . , fnq “ mp (see [61, Theorem 2.5]).

By [61, Theorem 2.4], we have pf1, . . . , fnq “ mp if and only if f1, . . . , fn intersect

transversely at p. Thus if f1, . . . , fn intersect transversely at p, then pf1, . . . , fnq “ mp

and hence ippf1, . . . , fnq “ dimkOPn,p{mp “ rkppq : ks. On the other hand, the

fact that f1, . . . , fn vanish at p implies that pf1, . . . , fnq Ď mp. Consequently, if

ippf1, . . . , fnq “ rkppq : ks “ dimkOPn,p{mp, then we have pf1, . . . , fnq “ mp and

hence f1, . . . , fn intersect transversely at p.
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By Proposition 3.20, it follows that rank degppf1, . . . , fnq “ rkppq : ks at trans-

verse intersection points. As mentioned previously, f1, . . . , fn intersect transversely

at p if and only if pf1, . . . , fnq “ mp, which is equivalent to p being a simple zero of the

section pf1, . . . , fnq. By a comment in [37, p. 17], the local degree degppf1, . . . , fnq at

a simple zero p is determined by the Jacobian of f1, . . . , fn (after locally trivializing).

We make this precise below.

Lemma 3.23. Let f1, . . . , fn be hypersurfaces of Pn that intersect transversely at a

point p P U`. To simplify notation, write f `i :“ fi ˝ ϕ̃
´1
` “ fipp´1q` ¨ x0

x`
, . . . , xn

x`
q. Let

J` “ detp
Bf`i

Bpxj{x`q
qj‰`,

and let Trkppq{k : GWpkppqq Ñ GWpkq be the trace on bilinear forms obtained by

post-composing with the field trace kppq Ñ k. Then

degppf1, . . . , fnq “ Trkppq{kxJ`pϕ̃`ppqqy.

Proof. By Lemma 3.12 and Lemma 3.13, the local trivialization pf `1 , . . . , f
`
nq of our

section pf1, . . . , fnq is compatible with our chosen relative orientation (relative to the

effective Cartier divisor D “ tx0 “ 0uq and Nisnevich coordinates tpUi, ϕ̃iqu. Since

p is a simple zero of pf1, . . . , fnq, [37, p. 17] gives us that

degppf1, . . . , fnq “ Trkppq{kxJ`pϕ̃`ppqqy,

as desired.

Moving forward, we will write J`ppq instead of J`pϕ̃`ppqq.

To obtain a geometric interpretation of the local degree at transverse intersec-

tions, we show how the Jacobian arises as a cross product of gradients. Working in

one of our open affines, say U` – An
k , we let ej be the unit vector corresponding to

the
xj
x`

-axis for all j ‰ `. The gradient of f `i is given by ∇f `i “
ř

j‰`
Bf`i

Bpxj{x`q
¨ ej.
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Definition 3.24. Let vi “
ř

j aij ¨ ej be a vector in An, where aij P k and ej

is as above. We may consider An as a subspace of An`1, with a new unit vector

en`1 :“ e1 ˆ ¨ ¨ ¨ ˆ en corresponding to the direction perpendicular to e1, . . . , en. The

(n-ary) cross product of v1, . . . , vn is a vector in the direction of en`1 given by

n
ą

i“1

vi “ det

¨

˚

˚

˚

˝

a11 ¨ ¨ ¨ a1n 0
...

. . .
...

...
an1 ¨ ¨ ¨ ann 0
e1 ¨ ¨ ¨ en en`1

˛

‹

‹

‹

‚

.

The dot product p
Śn

i“1 viq ¨ en`1 is the signed volume of the parallelpiped bounded

by v1, . . . , vn. Note that this definition agrees with the more familiar notion of the

cross product on R3.

Under this definition, the Jacobian J`ppq is the value of the dot product

p
ą

i‰`

p∇f `i ppqqq ¨ en`1,

where f `i ppq “ fipϕ̃`ppqq. Thus the local degree at transverse intersections is described

geometrically by the volume of the parallelpiped defined by the gradient vectors

t∇f `i ppqui‰`.

3.4.3 Non-transverse intersections

When our hypersurfaces f1, . . . , fn do not intersect transversely, the gradient direc-

tions of some fi and fj coincide. As a result, the parallelpiped spanned by the

gradients of f1, . . . , fn has volume 0, so our previous geometric interpretation of

degppf1, . . . , fnq no longer makes sense. We will discuss non-transverse intersections

of pairs of curves in P2 and leave open the higher-dimensional case. Our goal is

to reduce the calculation of the degree of two polynomials in two variables to the

calculation of the degree of one power series in one variable. Let f, g P krx, ys be poly-

nomials of degrees c and d, respectively. For simplicity, we will assume that p “ p0, 0q
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is the origin and that Bg
By
p0, 0q ‰ 0. We will also assume that char k “ 0, and we will

discuss how to modify the following construction in positive characteristic.

Lemma 3.25. Let f and g be curves in P2 that intersect at the origin, and assume

that Bg
By
p0, 0q ‰ 0. Then there exists some positive integer n and some an P k

ˆ such

that

deg0pf, gq “

#

n´1
2
¨H` xany n odd,

n
2
¨H n even.

Proof. By [36], the local degree deg0pf, gq may be computed by the bilinear form

constructed in [64]. We will refer to this bilinear form as the Scheja–Storch form.

As discussed on [64, p. 178], the Scheja–Storch form constructed for the local ring

krx,ys0
pf,gq

is isomorphic to the Scheja–Storch form for the completion krrx,yss
pf,gq

. We may

thus work in krrx, yss in order to compute deg0pf, gq.

Note that if a P kˆ, we have deg0pf, agq “ xay ¨ deg0pf, gq. We may thus scale g

so that Bg
By
p0q “ 1. By Hensel’s Lemma, there exists a power series Gpxq P krrxss such

that Gp0q “ 0 and gpx,Gpxqq “ 0. We thus obtain an isomorphism

krrx,yss
pf,gq

krrxss
pfpx,Gpxqqq

y Gpxq.

–

h

Intuitively, the h transforms the curve gpx, yq into our horizontal axis, and the

curve fpx,Gpxqq is the image of fpx, yq under this transformation. In order for

the isomorphism h : krrx,yss
pf,gq

–
ÝÑ

krrxss
pfpx,Gpxqqq

to preserve the local degree, it suffices to

show that h sends Jacpf, gq|x“y“0 to Jacpfpx,Gpxqqq|x“0. Indeed, the local degree

is determined by the Scheja–Storch form [37], and the Scheja–Storch form is de-

termined by the Jacobian in characteristic 0 [64, (4.7) Korollar]. It follows that,

given presentations of two local complete intersections krx1, . . . , xmsp{pr1, . . . , rmq

and krx1, . . . , xnsq{ps1, . . . , snq and an isomorphism φ : krx1,...,xmsp
pr1,...,rmq

Ñ
krx1,...,xnsq
ps1,...,snq

, the
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bilinear form degppr1, . . . , rmq is isomorphic to the bilinear form degqps1, . . . , snq if

φpJacpr1, . . . , rmqppqq “ Jacps1, . . . , snqpqq.

To show that the bilinear forms deg0pf, gq and deg0pfpx,Gpxqqq are isomorphic,

we thus need h to send the Jacobian of f and g at p0, 0q to the derivative of fpx,Gpxqq

at 0. That is, we need

hpJacpf, gqq|x“y“0 “ hpBf
Bx
¨
Bg
By
´
Bf
By
¨
Bg
Bx
q|x“y“0

“ rfxpx,Gpxqq ¨ gypx,Gpxqq ´ fypx,Gpxqq ¨ gxpx,Gpxqqsx“y“0

“ fxp0, 0q ¨ gyp0, 0q ´ fyp0, 0q ¨ gxp0, 0q

to be equal to

d

dx
fpx,Gpxqq|x“0 “ rfxpx,Gpxqq `G

1
pxq ¨ fypx,Gpxqqsx“0

“ fxp0, 0q `G
1
p0q ¨ fyp0, 0q.

Since Gp0q “ 0, we have gypx,Gpxqq|x“0 “ gyp0, 0q, which is equal to 1 by as-

sumption. By the chain rule, we have 0 “ d
dx
gpx,Gpxqq “ gxpx,Gpxqq ` gypx,Gpxqq ¨

G1pxq, so gxpx,Gpxqq “ ´gypx,Gpxqq ¨ G
1pxq. Thus gxpx,Gpxqq|x“0 “ ´G1p0q, so

fxp0, 0q ¨ gyp0, 0q ´ fyp0, 0q ¨ gxp0, 0q “ fxp0, 0q `G
1p0q ¨ fyp0, 0q, as desired.

Writing fpx,Gpxqq “
ř8

i“n aix
i “ anx

np1`
ř8

i“1 bix
iq with an ‰ 0, we note that

1`
ř8

i“1 bix
i is a unit in krrxss and hence the Scheja–Storch form of krrxss

pfpx,Gpxqqq
is equal

to that of krrxss
panxnq

. We thus have that deg0pf, gq “ deg0panx
nq, which is given by

n´1
2
¨H` xany if n is odd and n

2
¨H if n is even.

Remark 3.26. In any characteristic, the Scheja–Storch form is determined by a

distinguished generator E of the socle of krx,ys0
pf,gq

. In order to modify the previous

argument for the positive characteristic case, one would need to ensure that q ˝ h

sends E to the distinguished socle generator of krrxss
pfpx,Gpxqqq

.

Proposition 3.27. We have that n “ i0pf, gq.
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Proof. By the above remarks and Proposition 3.20, both n and i0pf, gq are equal to

the rank of deg0pf, gq.

This proposition allows us to completely understand the local degree deg0pf, gq

when f and g meet at the origin with even multiplicity. When f and g intersect

with odd multiplicity, it remains to study the term xany. We discuss the geometric

interpretation of an over R in Lemma 3.31. We also give a recursive description of

an in terms of the coefficients of f and g. Let

f “
c
ÿ

i`j“0

fi,jx
iyj and g “

d
ÿ

i`j“0

gi,jx
iyj.

We compute an as the coefficient of xn “ xi0pf,gq in fpx,Gpxqq. Thus an “
ř

i`j“n fi,j ¨γpjq, where γpjq is the coefficient of xj in Gpxqj. But γpjq is equal to the

coefficient of xj in pG0 ` G1x ` . . . ` Gjx
jqj, where Gpxq “

ř8

i“0Gix
i. Expanding

this product, we see that

γpjq “
ÿ

t0`...`tj“j
ř

u utu“j

ˆ

j

t0, . . . , tj

˙ j
ź

u“0

Gtu
u ,

where
`

j
t0,...,tj

˘

denotes the multinomial coefficient. All that remains is to determine

the coefficients Gi of the power series Gpxq. This is accomplished by repeatedly

taking implicit derivatives. By assumption, gp0, 0q “ 0, so we have G0 “ 0. Next,

evaluating the partial derivative Bg
Bx
“
řd
i`j“0 gi,jpix

i´1yj ` jxiyj´1 ¨
By
Bx
q “ 0 at p0, 0q

gives us that G1 “
By
Bx
p0, 0q “ ´g1,0{g0,1. Iterating this process allows us to compute

Gi “
1
i!
¨
Biy
Bxi
p0, 0q.

Remark 3.28. In positive characteristic, we need an alternative form of the deriva-

tive in order to write down a Taylor series Gpxq under Hensel’s Lemma. The Hasse

derivative [32, p. 64] should be suitable for this purpose.
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3.5 Specializations over some specific fields

For the following discussion, we let N “ ´n ´ 1 `
řn
i“1 di and assume that N ” 0

mod 2 so that Od1,...,dn Ñ Pn is relatively orientable. Throughout this article, we

have generally assumed that all intersections of f1, . . . , fn are transverse. This al-

lows us to give better geometric interpretations of degppf1, . . . , fnq. However, we also

address non-transverse intersections in Sections 3.5.1 and 3.5.2. Our approach is as

follows. For any field k, taking the rank of bilinear forms gives a homomorphism

GWpkq Ñ Z. When k is algebraically closed, rank : GWpkq
–
ÝÑ Z is an isomorphism.

When k is not algebraically closed, we apply some other invariant to get a homomor-

phism of the form rankˆ invariant : GWpkq Ñ ZˆG for some group G. The spirit of

A1-enumerative geometry is that the Z-valued count coming from the rank describes

the geometric phenomena of classical enumerative geometry, while the additional

G-valued count coming from the other invariant carries extra arithmetic-geometric

information. This extra arithmetic-geometric information enriches the classical enu-

merative theorem when we work over a non-algebraically closed field.

3.5.1 Bézout’s theorem over C

Since C is algebraically closed, rank : GWpCq –
ÝÑ Z is an isomorphism. We thus

recover Bézout’s theorem over C by applying rank to both sides of Equation 3.2.

We know that rankH “ 2, so rank epOd1,...,dnq “ d1 ¨ ¨ ¨ dn. Moreover, we have

rank degppf1, . . . , fnq “ ippf1, . . . , fnq by Proposition 3.20. This gives us Equa-

tion 3.1, as expected.

3.5.2 Bézout’s theorem over R

We can represent any non-degenerate symmetric bilinear form over R by a diagonal

matrix, where each diagonal entry is either 1,´1, or 0. By Sylvester’s law of inertia,

the isomorphism class of a bilinear form over R is determined by its rank and its
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signature, which we define to be the difference between the number of 1s and the

number of ´1s on the diagonal. We thus have an isomorphism GWpRq – Z ˆ Z

induced by rankˆ sign : GWpRq Ñ Zˆ Z.

Remark 3.29. Since | signpβq| ď rankpβq, the homomorphism

rankˆ sign : GWpRq Ñ Zˆ Z

is not surjective. However, there is a group isomorphism GWpRq – ZˆZ [39, Chapter

II, Theorem 3.2 (4)]. Since rankˆ sign is injective, it follows that the image of

rankˆ sign is isomorphic to Zˆ Z.

We obtain Bézout’s theorem over R by applying sign to both sides of Equation 3.2.

Since signH “ 0, we have that sign epOd1,...,dnq “ 0. When f1, . . . , fn intersect

transversely at p P U`, the signature of degppf1, . . . , fnq is given by the sign of the

volume of the parallelpiped defined by the gradient vectors t∇f `i ppqui‰`.

Remark 3.30. If p is a non-rational intersection point of f1, . . . , fn, then

sign degppf1, . . . , fnq “ 0.

To see this, suppose degppf1, . . . , fnq “ TrC{Rxa ` iby. Since every element of C is a

square, we have xa` iby “ x1y. This bilinear form can thus be represented by

ˆ

1 0
0 ´1

˙

,

which indeed has signature zero.

By Remark 3.30, the local degree at non-real zeros does not contribute anything to

our overall signed count sign epOd1,...,dnq. In particular, we only need to consider real

zeros, so we may restrict our attention to the real points of Pn and the hypersurfaces

f1, . . . , fn. This allows us to apply Milnor’s local alteration trick [50, §6, Step 2] from

real differential topology.
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Lemma 3.31. Let σ P Od1,...,dn be a section corresponding to the hypersurfaces

f1, . . . , fn in PnR that intersect at a rational point p, and let U be an open neigh-

borhood (in the real topology) about p that does not contain any other zeros of σ.

Then there exist open neighborhoods U 1 Ď U about p and V Ď H0pPnR,Od1,...,dnq about

σ such that sign degp σ “
ř

qPU 1 sign degq σ
1 for all σ1 P V .

Proof. This follows from the proof of [40, Lemma 2.4]. We recall the relevant details

for the reader’s convenience. Let ϕ : Od1,...,dn |U
–
ÝÑ Rn and ψ : T U –

ÝÑ Rn be

local trivializations such that detpϕ´1 ˝ ψq is a square in Op´n´ 1`
řn
i“1 diq under

the chosen relative orientation. On U , we can equate sections σ P Od1,...,dn |U with

vector fields vσ “ ψ´1 ˝ ϕpσq on U , which allows us to use Milnor’s local alteration

trick as follows. Let U2 Ă U 1 Ă U be sufficiently small (real) open neighborhoods

about p, and let λ : U Ñ r0, 1s be a smooth bump function such that λ|U2 “ 1

and λ|UzU 1 “ 0. Taking a sufficiently small regular value y of vσ, the vector field

vpxq “ vσpxq ´ λpxqy is non-degenerate on U 1. Let ιqw denote Milnor’s local index

of a vector field w at a zero q. By [50, §6, Theorem 1], we have that
ř

qPU 1 ιqv is

equal to the degree of the Gauss map v̄ : BU 1 Ñ Sn´1. The degree of the Gauss map,

and hence the sum
ř

qPU 1 ιqv, is continuous (and thus locally constant) in σ. Let

V Ď H0pPnR,Od1,...,dnq be a sufficiently small neighborhood about σ; in particular,

the zeros of the altered vector field v1 corresponding to the section σ1 should remain

in U 1 as σ1 varies. Then for all σ1 P V , we have that ιpv “
ř

qPU 1 ιqv
1. Finally,

we remark that ιpv “ sign degp σ, as was proved by Eisenbud and Levine [24, Main

Theorem].

As an aside, this proof implies that the degree of the Gauss map associated to

the hypersurfaces f1, . . . , fn at an intersection point p is bounded by the intersection

multiplicity ippf1, . . . , fnq. We state this as a proposition.

Proposition 3.32. Let σ and v be as in Lemma 3.31, and let v̄ be the corresponding
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Gauss map. Then | deg v̄| ď ippf1, . . . , fnq.

Proof. By [50, §6, Theorem 1] and [24, Main Theorem], we have that deg v̄ “

sign degp σ. Since | sign degp σ| ď rank degp σ, Proposition 3.20 implies that | deg v̄| ď

ippf1, . . . , fnq.

Remark 3.33. By Lemma 3.31, we can compute the crossing sign of a non-transverse

intersection by slightly perturbing our chosen section. Since generic intersections are

transverse, we may choose our new section to have only transverse intersections. As

a consequence, the crossing sign of a non-transverse intersection is given by a sum

of crossing signs of transverse intersections. This is illustrated in Figure 3.2.

´1` 1´ 1

´1

`1

´1

Figure 3.2: The crossing sign at a non-transverse intersection.

Perturbing our hypersurfaces to ensure that they intersect transversely, we may

thus call sign degppf1, . . . , fnq the crossing sign of f1, . . . , fn at p, and we obtain the

following theorem.

Theorem 3.34 (Bézout’s theorem over R). Let f1, . . . , fn be hypersurfaces in PnR,

and let di be the degree of fi for each i. Assume that f1, . . . , fn have no common com-

ponents and that ´n´1`
řn
i“1 di ” 0 mod 2. Then, summing over the intersection

points of f1, . . . , fn, there are an equal number of positive and negative crossings of

f1, . . . , fn.

Example 3.35. We can now make sense of the problematic conic and cubic in P2
R

from Figure 3.1. To be specific, let f1 “ x2
0x2 ´ x

3
1 and f2 “ x2

1 ` x
2
2 ´ 2x2

0. The only
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intersection points of f1 and f2 are p1 “ r1 :´1 :´1s and p2 “ r1 : 1 : 1s. The crossing

sign of f1 and f2 at pi is given by the right hand rule on the gradient vectors of f 0
1

and f 0
2 at ϕ0ppiq. We now demonstrate this calculation. Let ei be the the unit basis

vector along the p xi
x0
q-axis, and let e3 :“ e1 ˆ e2. Then ∇f 0

1 “ ´3px1
x0
q2 ¨ e1 ` e2 and

∇f 0
2 “ 2px1

x0
q ¨ e1` 2px2

x0
q ¨ e2, so ∇f 0

1 ˆ∇f 0
2 “ p´6px1

x0
q2px2

x0
q´ 2px1

x0
qq ¨ e3. The crossing

sign at pi is computed by taking the sign of the dot product of ∇f 0
1 ˆ∇f 0

2 pϕ0ppiqq

and e3. This gives us

signp∇f 0
1 ˆ∇f 0

2 pϕpp1qq ¨ e3q “ signp6` 2q “ 1,

signp∇f 0
1 ˆ∇f 0

2 pϕpp2qq ¨ e3q “ signp´6´ 2q “ ´1.

We illustrate this calculation in Figure 3.3.

`1

´1

Figure 3.3: Signed intersections over R.

3.5.3 Bézout’s theorem over finite fields

Let Fq be the finite field of order q. Over Fq, non-degenerate symmetric bilinear

forms are classified up to isomorphism by their rank and discriminant [39, Chapter II,

Theorem 3.5 (1)], so we have an isomorphism rankˆ disc : GWpFqq
–
ÝÑ ZˆFˆq {pFˆq q2.

For simplicity, we assume that Fq has odd characteristic, so that q is the power

of some odd prime. As a result, we have Fˆq {pFˆq q2 – Z{2Z, and we can classify

elements of a given rank in GWpFqq by whether or not their discriminant is a square.

Taking the discriminant of Equation 3.2, we get disc epOd1,...,dnq “ p´1qd1¨¨¨dn{2. This

59



makes sense, since the fraction d1¨¨¨dn
2

is an integer by Remark 3.5. We note that

disc epOd1,...,dnq is a perfect square in Fq if and only if d1¨¨¨dn
2

is even or q ” 1 mod 4.

The left hand side of Equation 3.2 gives us

ź

points

disc degppf1, . . . , fnq.

This product is a perfect square in Fq if and only if there are an even number of

intersection points p such that disc degppf1, . . . , fnq is not a square. It thus remains

to determine when disc degppf1, . . . , fnq is a square in Fq. Let Fqb be the field of

definition of a transverse intersection point p P U`. By [21, Section II.2], we have

that disc TrF
qb
{FqxJ`ppqy “ normpJ`ppqq ¨ disc TrF

qb
{Fqx1y. Since norm : Fˆ

qb
Ñ Fˆq is

a homomorphism, norm takes squares in Fˆ
qb

to squares in Fˆq . On the other hand,

Hilbert’s Theorem 90 implies that norm : Fˆ
qb
Ñ Fˆq is surjective, so if normpJ`ppqq is

a square, then we have normpJ`ppqq “ normpy2q for some y P Fˆ
qb

. Hilbert’s Theorem

90 also implies that norm has kernel tzq´1 : z P Fˆ
qb
u, so there exists some z P Fˆ

qb

such that J`ppq “ y2zq´1. It follows that J`ppq “ pyz
pq´1q{2q2, so J`ppq is a square if

and only if normpJ`ppqq is a square.

Definition 3.36. We will call a transverse intersection point p of f1, . . . , fn a positive

intersection point if J`ppq is a square in Fˆ
qb

. We call p a negative intersection point

if J`ppq is not a square in Fˆ
qb

.

To characterize when TrF
qb
{Fqx1y is a square, we let α be a primitive element

of the extension Fqb{Fq, so that t1, α, . . . , αb´1u is an Fq-basis for Fqb . The matrix
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representing TrF
qb
{Fqx1y with respect to this basis is MMT , where

M “

¨

˚

˚

˚

˚

˚

˝

1 1 ¨ ¨ ¨ 1

α αq ¨ ¨ ¨ αq
b´1

α2 α2q ¨ ¨ ¨ α2qb´1

...
...

. . .
...

αb´1 αpb´1qq ¨ ¨ ¨ αpb´1qqb´1

˛

‹

‹

‹

‹

‹

‚

.

Indeed, the pi, jq
th

entry of MMT is

b´1
ÿ

`“0

αpi´1qq`αpj´1qq`
“

b´1
ÿ

`“0

pαi`j´2
q
q`

“ TrF
qb
{Fqpα

i`j´2
q.

By definition of the trace form, this is equal to the pi, jq
th

entry of the Gram matrix

of TrF
qb
{Fqx1y with respect to the basis t1, α, . . . , αb´1u. Thus we have

disc TrF
qb
{Fqx1y “ detpMMT

q “ pdetMq2

“
ź

0ďiăjďb´1

pαq
j

´ αq
i

q
2.

So disc TrF
qb
{Fqx1y is a square in Fq if and only if δ “

ś

iăjpα
qj ´ αq

i
q is an element

of Fq. Since GalpFqb{Fqq is cyclic and generated by the Frobenius F , we have that

δ P Fq if and only if F pδq “ δ. But F pδq “ εδ, where ε is the sign of the permutation

p1 2 . . . b ´ 1q. We know that ε “ 1 if b is odd and ε “ ´1 if b is even, so

disc TrF
qb
{Fqx1y is a square in Fq if and only if b is odd. Summing all this together,

we have

disc TrF
qb
{FqxJ`ppqy “

$

’

’

’

&

’

’

’

%

a square if p is a positive intersection and b is odd,

a square if p is a negative intersection and b is even,

a non-square if p is a positive intersection and b is even,

a non-square if p is a negative intersection and b is odd.

We summarize this information in the following theorem.
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Theorem 3.37 (Bézout’s theorem over Fq). Let f1, . . . , fn be hypersurfaces in PnFq
,

and let di be the degree of fi for each i. Assume that f1, . . . , fn intersect transversely

and that ´n´ 1`
řn
i“1 di ” 0 mod 2.

(a) If d1¨¨¨dn
2

is even or q ” 1 mod 4, then

# positive intersections with field of definition Fqb for b even

` # negative intersections with field of definition Fqb for b odd ” 0 mod 2.

(b) If d1¨¨¨dn
2

is odd and q ı 1 mod 4, then

# positive intersections with field of definition Fqb for b even

` # negative intersections with field of definition Fqb for b odd ” 1 mod 2.

3.5.4 Bézout’s theorem over Cpptqq

We begin by describing GWpCpptqqq. The field Cpptqq of Laurent series consists of

elements of the form g “
ř8

i“m ait
i, where m P Z and am ‰ 0, and of the element

0. With the valuation vpgq “ m, the pair pCpptqq, vq is a complete discretely valuated

field (see e.g. [39, Chapter VI, Section 1]). By slight abuse of terminology, we call

the non-zero elements of Cpptqqq with vpgq “ 0 units. Units in Cpptqq are of the form

g “
ř8

i“0 ait
i. Fixing t as our uniformizer, every non-zero element of Cpptqq can be

written as g “ utvpgq for some unit u. By relation (i) of Section 1.2.1, it follows that

xgy “ xuy if vpgq is even and xgy “ xuty if vpgq is odd. By [39, Chapter VI, Lemma

1.1], a unit u is a square in Cpptqq if and only if up0q “ a0 is a square in C. Since

C is algebraically closed, we have xgy “ x1y if vpgq is even and xgy “ xty if vpgq

is odd. It follows that GWpCpptqqq is generated by x1y and xty. Since x1y “ x´1y

and xty “ x´ty, we have that 2x1y “ 2xty “ H. We thus get a well-defined group

isomorphism

GWpCpptqqq –
Zrxtys

pxty2 ´ 1, 2xty ´ 2q
– Zˆ Z{2Z.
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We would like to realize the isomorphism GWpCpptqqq – Z ˆ Z{2Z as a map of the

form rankˆ invariant.

Proposition 3.38. Let rankpmx1y ` nxtyq “ m ` n, and let discpmx1y ` nxtyq “ n

mod 2. Then rankˆ disc : GWpCpptqqq –
ÝÑ Z ˆ Z{2Z is an isomorphism of abelian

groups.

Proof. It can readily be checked that rankˆ disc is a well-defined group homomor-

phism. Moreover, rankˆ disc is surjective, since rankˆ discpmx1yq “ pm, 0q and

rankˆ discppm´ 1qx1y` xtyq “ pm, 1q for all m P Z. Finally, rankˆdisc is injective.

Indeed, if rankˆ discpmx1y`nxtyq “ p0, 0q, then m`n “ 0 and n ” 0 mod 2. Thus

m “ ´n “ ´2s for some s P Z, so mx1y ` nxty “ sp2xty ´ 2x1yq “ 0.

Remark 3.39. The homomorphism disc : GWpCpptqqq Ñ Z{2Z is the traditional

discriminant, simply written additively.

We may now obtain Bézout’s theorem over Cpptqq by applying disc to Equation 3.2.

Since H “ 2 ¨ x1y “ 2 ¨ xty, we have discH “ 0 and hence disc epOd1,...,dnq “ 0. This

will be equal to discp
ř

degppf1, . . . , fnqq “
ř

disc degppf1, . . . , fnq, so we need to

understand disc degppf1, . . . , fnq. Any degree m extension of Cpptqq is a cyclic Galois

extension of the form Cppt1{mqq [60, XIII.2, p. 191]. By our previous discussion,

GWpCppt1{mqqq is generated by x1y and xt1{my, so at transverse intersection points,

degppf1, . . . , fnq is either of the form TrCppt1{mqq{Cpptqqx1y or TrCppt1{mqq{Cpptqqxt
1{my.

Definition 3.40. In analogy with the finite field case, we call a transverse in-

tersection point p of f1, . . . , fn a positive intersection point if degppf1, . . . , fnq “

TrCppt1{mqq{Cpptqqx1y. Similarly, e call p a negative intersection point if degppf1, . . . , fnq “

TrCppt1{mqq{Cpptqqxt
1{my.

Lemma 3.41. If m is a positive integer, then we have disc TrCppt1{mqq{Cpptqqx1y ” m´1

mod 2 and disc TrCppt1{mqq{Cpptqqxt
1{my ” m mod 2.
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Proof. Mirroring the case of finite fields, we let t1{m be our primitive element. The

Galois group of Cppt1{mqq over Cpptqq is generated by ϕ : t1{m ÞÑ ζt1{m, where ζ “ e2πi{m

is a primitive mth root of unity. We have the Cpptqq-basis t1, t1{m, . . . , tpm´1q{mu for

Cppt1{mqq. The Gram matrix for TrCppt1{mqq{Cpptqqxuy with respect to this basis is given by

the product AB, where aij “ ϕj´1ptpi´1q{mq and bij “ ϕi´1putpj´1q{mq are the entries

in the ith row and jth column of A and B, respectively. When u “ 1, this product of

matrices has entries

cij “ tpi`j´2q{m
m´1
ÿ

`“0

ζ`pi`j´2q
“

#

0 m - i` j ´ 2,

mtpi`j´2q{m m | i` j ´ 2.

As a result, we have

TrCppt1{mqq{Cpptqqx1y “

¨

˚

˚

˚

˝

m 0 ¨ ¨ ¨ 0
0 0 ¨ ¨ ¨ mt
...

...
...

...
0 mt ¨ ¨ ¨ 0

˛

‹

‹

‹

‚

“ pm´ 1q ¨ xty ` x1y.

Thus disc TrCppt1{mqq{Cpptqqx1y ” m´1 mod 2. When u “ t1{m, the product AB has

entries

cij “ tpi`j´1q{m
m´1
ÿ

`“0

ζ`pi`j´1q
“

#

0 m - i` j ´ 1,

mtpi`j´1q{m m | i` j ´ 1.

As a result, we have

TrCppt1{mqq{Cpptqqxt
1{m
y “

¨

˚

˚

˚

˝

0 ¨ ¨ ¨ 0 mt
0 ¨ ¨ ¨ mt 0
...

...
...

...
mt ¨ ¨ ¨ 0 0

˛

‹

‹

‹

‚

“ m ¨ xty.

Thus disc TrCppt1{mqq{Cpptqqxt
1{my ” m mod 2.

As a result, we have proved the following theorem.
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Theorem 3.42 (Bézout’s theorem over Cpptqq). Let f1, . . . , fn be hypersurfaces in

PnCpptqq, and let di be the degree of fi for each i. Assume that f1, . . . , fn intersect

transversely and that ´n´ 1`
řn
i“1 di ” 0 mod 2. Then

# positive intersections with field of definition Cppt1{mqq for m even

` # negative intersections with field of definition Cppt1{mqq for m odd ” 0 mod 2.

3.5.5 Bézout’s theorem over Q

In contrast with the previous fields we have considered, we need several invariants

to understand GWpQq. Letting WpQq denote the Witt ring of Q, we have

GWpQq Z

WpQq Z{2Z.

rank

mod H mod 2

This gives us an isomorphism rankˆ mod H : GWpQq –
ÝÑ Z ˆZ{2Z WpQq. In order

to obtain Bézout’s theorem over Q, it thus suffices to describe WpQq. By the weak

Hasse-Minkowski principle (see e.g. [39, Chapter VI, Section 4, (4.4)]), we have an

isomorphism

B :“ signˆ B2 ˆ‘Bp : WpQq –ÝÑ Zˆ Z{2Zˆ
à

p‰2

WpFpq.

When p ” 3 mod 4, we have WpFpq – Z{4Z, generated by x1y. When p ” 1

mod 4, the Witt ring WpFpq is isomorphic to the group ring pZ{2ZqrFˆp {pFˆp q2s,

whose underlying group structure is isomorphic to Z{2Z ˆ Z{2Z, generated by x1y

and xry, where r is a non-square in Fˆp . The invariant B2 is given by B2pβq “ v2pdisc βq

mod 2, where v2 is the 2-adic valuation. For any odd prime p, any element of Q may

be written as q “ upvppqq, where vp is the p-adic valuation and vppuq “ 0. It follows

that xqy “ xuy if vppqq is even and xqy “ xupy if vppqq is odd. We define Bp by setting
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Bpxuy “ 0 for any p-adic unit u and Bpxupy “ xūy, where ū is the image of u under the

composition Q ãÑ Qp Ñ Fp. Explicitly, if q is a non-zero rational number with vppqq

odd, then we write q “ a
b
¨pvppqq with a and b prime to p. Since xqy “ xa

b
¨py in WpQq,

our definition for Bp gives us Bpxqy “ xpa mod pqpb mod pq´1y in WpFpq. We obtain

Bézout’s theorem over Q by applying B ˝mod H to both sides of Equation 3.2. Since

epOd1,...,dnq P GWpQq is a multiple of H, it has trivial image in WpQq. Thus the right

hand side of Equation 3.2 becomes p0, 0, 0, . . .q, while the left hand side becomes
ř

points Bpdegxpf1, . . . , fnq mod Hq. In summary, we have the following theorem.

Theorem 3.43 (Bézout’s theorem over Q). Let f1, . . . , fn be hypersurfaces in PnQ,

and let di be the degree of fi for each i. Assume that f1, . . . , fn intersect transversely

and that ´n´ 1`
řn
i“1 di ” 0 mod 2. Then we have the following statements.

(a) We have
ř

x sign degxpf1, . . . , fnq “ 0.

(b) We have
ř

x B2 degxpf1, . . . , fnq ” 0 mod 2.

(c) For each prime p ” 3 mod 4, we have
ř

x Bp degxpf1, . . . , fnq ” 0 mod 4.

(Here, we identify Bp degxpf1, . . . , fnq with its image in Z{4Z.)

(d) For each prime p ” 1 mod 4, we have
ř

x Bp degxpf1, . . . , fnq ” p0, 0q mod p2, 2q.

(Here, we identify Bp degxpf1, . . . , fnq with its image in Z{2Zˆ Z{2Z.)

Remark 3.44. When x P U` is a rational intersection point of f1, . . . , fn, then the

local degree degxpf1, . . . , fnq “ xJ`pxqy, where J`pxq P Q is the signed volume of the

parallelpiped spanned by the gradients of f1, . . . , fn at x. Our previous discussion

allows us to compute BxJ`pxqy, so it remains to consider the case when x is a non-

rational intersection point of f1, . . . , fn. When J`pxq is a square in the residue field

Qpxq of x, then degxpf1, . . . , fnq “ TrQpxq{Qx1y is the trace form of the field extension

Qpxq{Q. Trace forms of algebraic number fields have been studied extensively. Bayer-

Fluckiger and Lenstra [5] showed that if Qpxq{Q is an odd degree field extension,
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then TrQpxq{Qx1y “ rQpxq : Qs ¨ x1y. If Qpxq{Q is an even degree extension and no

Sylow 2-subgroups of GalpQpxq{Qq are metacyclic, then one can use the Knebusch

exact sequence of Witt rings to show that TrQpxq{Qx1y “ rQpxq : Qs ¨ x1y if Qpxq is

totally real and TrQpxq{Qx1y “
rQpxq:Qs

2
¨ H if Qpxq is totally imaginary [14]. When

J`pxq is not a square, we remark that the discriminant can be computed by

disc TrQpxq{QxJ`pxqy “ normpJ`pxqq ¨D,

where D “ disc TrQpxq{Qx1y is the discriminant (up to squares) of the number field

Qpxq{Q.

As an application of Theorem 3.43, we discuss intersections of a line and a conic

in P2
Q.

Example 3.45. Let f be a line and g be a conic in P2
Q. If f and g intersect with

multiplicity 2 at a rational point s, then degspf, gq “ H. If f and g intersect at

a non-rational point s, then ispf, gq ě rQpsq : Qs ą 1 by Proposition 3.20. Hence

ispf, gq “ 2 by the classical version of Bézout’s theorem, so s must have a quadratic

residue field. Thus f and g intersect transversely at s by Proposition 3.22, and we

have degspf, gq “ TrQpsq{QxJpsqy “ H. This restricts the possible values of Jpsq.

For example, since discH “ ´1, the Hasse–Minkowski principle implies that the

discriminant of TrQpsq{QxJpsqymust also be equal to ´1 up to squares. If D is the field

discriminant (up to squares) of Qpsq{Q, then we have Qpsq – Qp
?
Dq. We may thus

write Jpsq “ a`b
?
D, and we have disc TrQpsq{QxJpsqy “ 4Dpa2´b2Dq “ Dpa2´b2Dq

in Qˆ{pQˆq2. This implies that, up to squares, we have Dpa2 ´ b2Dq ` 1 “ 0, so

there is a forced relationship between Jpsq and the residue field of s. If Qpsq – Qpiq,

for example, then we have a2 ` b2 “ 1 up to squares in Qˆ, so a2 ` b2 “ normpJpsqq

must be a square in Qˆ.

Now assume that f and g intersect at two distinct points s, t. By Bézout’s

theorem, we know that ispf, gq “ itpf, gq “ 1, so f and g intersect transversely at
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each of these Q-rational points. Let Jpsq (respectively Jptq) denote the area of the

parallelogram determined by the normal vectors of f and g at s (respectively t).

Theorem 3.43 places various restrictions on the possible values of Jpsq and Jptq. In

particular, Jpsq and Jptq must have opposite signs and their dyadic valuations must

agree mod 2. The local residues of xJpsqy and xJptqy at odd primes also constrain

the possible intersection types of f and g. For example, it is impossible to have

Jpsq be a non-square integer (other than ´1) and Jptq any integer prime to Jpsq.

Indeed, assume that Jpsq ‰ ´1 is a non-square integer and Jptq is an integer prime

to Jpsq, and let p be a prime dividing Jpsq such that vppJpsqq is odd. Since Jpsq and

Jptq are coprime, we have that p - Jptq and hence BpxJpsqy “ xay for some a P Fˆp

and BpxJptqy “ 0. Thus BpxJpsqy ` BpxJptqy is not trivial in WpFpq, contradicting

Theorem 3.43.
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4

The Circles of Apollonius

Given three general circles, there are eight circles that are tangent to all three. This

classical theorem, known as the circles of Apollonius, is in fact a corollary of Bézout’s

theorem. Indeed, the moduli scheme of circles that are tangent to a given circle is a

quadric surface in P3, and the circles of Apollonius correspond to the 23 intersection

points of three quadric surfaces.

As with many theorems in classical enumerative geometry, Bézout’s theorem and

the circles of Apollonius require that one work over an algebraically closed field. The

A1-enumerative geometry program applies tools from A1-homotopy theory to obtain

enriched enumerative results over non-algebraically closed fields. In this chapter, we

will show that the A1-enumerative version of the circles of Apollonius is not just a

simple corollary of the enriched version of Bézout’s theorem. The discrepancy lies in

the local information: while the global count is purely hyperbolic, the intersection

volume suggested by Bézout’s theorem only tells us about the geometry of the quadric

surfaces parameterizing tangent circles, rather than the geometry of the tangent

circles themselves. The main goal of this chapter is to give the following geometric

interpretation of the local indices for the circles of Apollonius:
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Ci

Cj

Figure 4.1: Geometric interpretation for circles of Apollonius

Lemma 4.1 (See Lemma 4.17). The local index for a circle C tangent to C1, C2, C3

is given by TrkpCq{kxP pCqy, where P pCq is an alternating sum of the areas of the

parallelograms spanned by the center of C and the centers of Ci and Cj for 1 ď i ă

j ď 3 (see Figure 4.1).

4.1 Notation

Throughout this chapter, we let k be a field with char k ‰ 2. Let Pnk be projective

n-space over k. We will be working with circles in the projective plane P2
k; we

denote coordinates on this projective plane by rx : y : zs. We will also work with the

moduli space of circles in P2
k, which is isomorphic to P3

k; we will use the coordinates

rc0 : c1 : c2 : c3s when working with P3
k. We denote the projective variety cut out by

homogeneous polynomials f1, . . . , fn by Vpf1, . . . , fnq.

In order to make use of TrL{k, we will have a running assumption that kpqq{k is

a separable extension for any solution q P P3
k to the circles of Apollonius. This sepa-

rability assumption is guaranteed if k is perfect, if rkpqq : ks ď 2 (by our assumption

that char k ‰ 2), or if char k ą 8 (since rkpqq : ks ď 8 by the classical version of the

circles of Apollonius).

We will frequently write indp σ when discussing local indices. The point p corre-

sponds to the image of a tangent circle in the moduli space of circles tangent to a

given trio of circles, while σ refers to a section σ : P3 Ñ Op2q‘3 determined by this

moduli space. The Nisnevich coordinates and local trivializations necessary to make
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sense of this local index are provided by the author’s A1-enumerative treatment of

Bézout’s theorem [45].

4.2 Moduli spaces of circles

We begin with a discussion of circles in algebraic geometry, following [26, Section

2.3]. A conic in the projective plane P2
k is given by

Vpp0x
2
` p1xy ` p2xz ` p3y

2
` p4yz ` p5z

2
q.

The moduli scheme of plane conics is thus isomorphic P5
k. A circle should be a conic

of the form px´ azq2`py´ bzq2´ r2z2 “ 0 for some a, b, r2 P k. Expanding this out,

we have x2 ` y2 ´ 2axz ´ 2byz ` pa2 ` b2 ´ r2qz2 “ 0. This leads us to the following

definition.

Definition 4.2. A circle is a conic of the form

Vpp0px
2
` y2

q ` zpp1x` p2y ` p3zqq.

Let M˝ be the moduli space of circles in P2
k. Given p “ rp0 : p1 : p2 : p3s P P3

k, let

Cppq “ Vpp0px
2
` y2

q ` zpp1x` p2y ` p3zqq PM˝.

If p0 “ 0, we say that Cpr0 : p1 : p2 : p3sq is a degenerate circle.

The definition of C gives us an explicit isomorphism P3
k –M˝.

Proposition 4.3. Regarded as a map, C : P3
k ÑM˝ is an isomorphism.

Proof. Note that Cppq does not depend on the choice of representative of p, so

C : P3
k ÑM˝ is well-defined. The (well-defined) inverse morphism C´1 : M˝ Ñ P3

k

is given by C´1Vpp0px
2` y2q` zpp1x`p2y`p3zqq “ rp0 :p1 :p2 :p3s. One can readily

check that C ˝ C´1 “ idP3
k

and C´1 ˝ C “ idM˝
.
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Remark 4.4. If Cppq is a non-degenerate circle, then we can solve for the center

and radius squared of Cppq in terms of p. Since p0 ‰ 0, we have

Cppq “ Vpp0x
2
` p0y

2
` p1xz ` p2yz ` p3z

2
q

“ Vppx` p1
2p0
zq2 ` py ` p2

2p0
zq2 ` pp3

p0
´

p21
4p20
´

p22
4p20
qz2
q,

which is a circle of radius squared r2 :“ ´
p3
p0
`

p21
4p20
`

p22
4p20

with center ra : b : 1s :“

r´
p1
2p0

:´ p2
2p0

: 1s. We will frequently write

p1
p0
“ ´2a,

p2
p0
“ ´2b,

p3
p0
“ a2

` b2
´ r2.

Definition 4.5. The residue field or field of definition of a circle Cppq PM˝ is the

residue field kppq of the point p P P3
k. If Cppq is non-degenerate, then kppq{k is the

minimal field extension such that a, b, r2 P kppq. Note in particular that r need not

be an element of kppq.

4.2.1 The cone of tangent circles to a given circle

Given a non-degenerate circle Cppq PM˝, we would like to describe the space Qppq Ă

M˝ of circles tangent to Cppq. By [26, Section 2.3.2], Qppq is a quadric cone in M˝

with cone point Cppq. We now describe a directrix for Qppq, which allows us to

explicitly solve for Qppq in terms of p.

Proposition 4.6. Let Cppq be a non-degenerate circle with radius squared r2. Any

circle of radius squared p2rq2 with center on Cppq is tangent to Cppq. (See Figure 4.2.)

Proof. Let ra : b : 1s be the center of Cppq. If rx0 : y0 : 1s lies on the circle Cppq (so

that px0´ aq
2`py0´ bq

2´ r2 “ 0), then Cppq is tangent to S :“ Vppx´x0zq
2`py´
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y0zq
2 ´ p2rq2z2q at q :“ r2a´ x0 : 2b´ y0 : 1s. To verify that q P Cppq and q P S, we

simply check

p2a´ x0 ´ aq
2
` p2b´ y0 ´ bq

2
´ r2

“ p2a´ 2x0q
2
` p2b´ 2y0q

2
´ p4rq2 “ 0.

To verify that Cppq and S are tangent at q, we compute the tangent spaces at q using

TqVpfq “ VpBf
Bx
|q ¨ x`

Bf
By
|q ¨ y `

Bf
Bz
|q ¨ zq. Thus

TqCppq “ Vp2pa´ x0q ¨ x` 2pb´ y0q ¨ y ´ 2pa2
` b2

` r2
´ ax0 ´ by0q ¨ zq,

TqS “ Vp4pa´ x0q ¨ x` 4pb´ y0q ¨ y ´ 4p2r2
´ x2

0 ´ y
2
0 ` ax0 ` by0q ¨ zq.

Substituting 2r2 “ r2 ` px0 ´ aq
2 ` py0 ´ bq

2 in the defining equation for TqS shows

that TqCppq “ TqS as lines in P2
k.

The family of circles of radius squared p2rq2 with center on Cppq will constitute

our directrix for Qppq.

Proposition 4.7. Let Cppq be a non-degenerate circle with center ra :b :1s and radius

squared r2. The family of circles of radius squared p2rq2 with center on Cppq is the

circle

D :“ CV
`

c0ppa
2
` b2

` 3r2
qc0 ` ac1 ` bc2 ` c3q, (4.1)

c2
1 ` c

2
2 ` 4c0ppa

2
` b2

´ r2
qc0 ` ac1 ` bc2q

˘

.

Proof. We obtain the defining equations for the family of circles of radius p2rq2 with

center on Cppq by varying rx0 : y0 : 1s P Cppq. Parametrically, we have Cppq “

tra` r 1´t2

1`t2
: b` r 2t

1`t2
: 1s : t P P1u. Let Et be the circle of radius squared p2rq2 with

center ra` r 1´t2

1`t2
: b` r 2t

1`t2
: 1s. Then

Et “ Cpr1 :´2pa` r 1´t2

1`t2
q :´2pb` r 2t

1`t2
q : pa` r 1´t2

1`t2
q
2
` pb` r 2t

1`t2
q
2
´ 4r2

sq.
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q

pa, bq
px0, y0q S

Cppq

Figure 4.2: Circle tangent to Cppq

Let rc0 : c1 : c2 : c3s be coordinates on P3
k. We then have the implicit description

Ť

tPP1 Et “ CV
`

c2
1 ` c

2
2 ´ 4c0c3 ´ 16r2c2

0,

pc1 ` 2ac0q
2
` pc2 ` 2bc0q

2
´ 4r2c2

0

˘

“ CV
`

c2
1 ` c

2
2 ´ 4c0c3 ´ 16r2c2

0,

c2
1 ` c

2
2 ` 4c0ppa

2
` b2

´ r2
qc0 ` ac1 ` bc2q

˘

.

Substituting c2
1 ` c2

2 “ ´4c0ppa
2 ` b2 ´ r2qc0 ` ac1 ` bc2q, we find that

Ť

tPP1 Et is

given by Equation 4.1.

Using the vertex p and directrix from Equation 4.1, we now describe the cone

Qppq.

Lemma 4.8. Let p “ r1 : p1 : p2 : p3s P P3
k. Let ra : b : 1s and r2 be the center and

radius squared, respectively, of Cppq. Then

Qppq “ CV
`

paX ` bY ` Zq2 ´ r2
pX2

` Y 2
q
˘

,

where X “ c1 ´ p1c0, Y “ c2 ´ p2c0, and Z “ c3 ´ p3c0.

Proof. A cone in P3
k with vertex r1 :0 : 0 : 0s is given by the vanishing of A1c

2
1`A2c

2
2`

A3c
2
3`A4c1c3`A5c2c3`A6c1c2 for some A1, . . . , A6. In order to translate the vertex

to r1 : p1 : p2 : p3s, we replace c1, c2, and c3 with X, Y , and Z, respectively. Next,

we use the directrix for Qppq from Proposition 4.7 to solve for A1, . . . , A6. We will
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work in the open affine tc0 ‰ 0u Ă P3
k, after which we will homogenize to obtain the

desired equation for Qppq.

On tc0 ‰ 0u, Equation 4.1 is defined by a circle on the hyperplane Vppa2 ` b2 `

3r2qc0 ` ac1 ` bc2 ` c3q. This hyperplane allows us to set Z|D “ ´pa
2 ` b2 ` 3r2 `

p3qc0´ac1´ bc2. Remark 4.4 implies that p1 “ ´2a, p2 “ ´2b, and p3 “ a2` b2´r2,

so

Z|D “ ´2pa2
` b2

` r2
qc0 ´ ac1 ´ bc2

“ ´apc1 ` 2ac0q ´ bpc2 ` 2bc0q ´ 2r2c0

“ ´aX ´ bY ´ 2r2c0.

We conclude by expanding A1X
2 ` A2Y

2 ` A3Z|
2
D ` A4XZ|D ` A5Y Z|D ` A6XY

and substituting X “ c1 ` 2ac0 and Y “ c2 ` 2bc0. Comparing to the coefficients of

the directrix equation

c2
1 ` c

2
2 ` 4c0ppa

2
` b2

´ r2
qc0 ` ac1 ` bc2q

allows us to solve for A1, . . . , A6. We include some Sage code in Appendix A.1 to

perform the algebraic manipulations for us.

4.2.2 The plane of circles through a point

Given a point q “ ra:b:1s P P2
k away from the line at infinity, we would like to describe

the space V pqq Ă M˝ of circles through q. In fact, any point in P2
k determines an

element of V pqq, so V pqq is a hyperplane in M˝.

Lemma 4.9. Let q “ ra : b : 1s P P2
k. Then

V pqq “ CVppa2
` b2

qc0 ` ac1 ` bc2 ` c3q.

Proof. The radius squared of any circle through q is determined by its center. The

circle through q with center rA :B : 1s and radius squared r2 satisfies pa´Aq2` pb´
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Bq2 “ r2, so this circle is given by

Cpr1 :´2A :´2B : A2
`B2

´ r2
sq

“ Cpr1 :´2A :´2B : A2
`B2

´ pa´ Aq2 ´ pb´Bq2sq

“ Cpr1 :´2A :´2B : 2Aa` 2Bb´ a2
´ b2

sq.

The space of all such circles is defined implicitly by CVppa2`b2qc0`ac1`bc2`c3q.

Remark 4.10. A point ra :b : 1s in P2
k can be regarded as a circle with center ra :b : 1s

and radius squared 0. Under this perspective, the cone Qpr1 : ´2a : ´2b : a2 ` b2sq

degenerates to the double plane CVppaX` bY `Zq2q, which is the plane V pra : b : 1sq

doubled.

4.3 Euler classes and relative orientability

In this section, we compute the fixed count of circles of Apollonius via the Euler class.

There are several variants to the circles of Apollonius, because there are two ways

in which a circle in P2
k can differ from the non-degenerate circles we have considered

thus far. First, a degenerate circle (i.e. a circle of the form Cpr0:p1 :p2 :p3sq) is a union

of the line Vpzq at infinity with another line in P2
k. Second, a non-degenerate circle

with radius squared 0 is a point. One can thus ask how many circles are tangent to

a given set of three objects, where each object may be a circle, line, or point. For

simplicity, we will not consider any cases including lines (i.e. degenerate circles).

Each variant of the circles of Apollonius corresponds to studying the intersections

of three hypersurfaces, each of the formQppq or V ppq, in P3
k. The defining polynomials

for Qppq and V ppq described in Lemmata 4.8 and 4.9 will be used to determine a

section σ : P3
k Ñ Opd1q ‘ Opd2q ‘ Opd3q, where each di “ 1 or 2. Each of these

situations is a special case of Bézout’s theorem [45]. In this section, we will discuss

the Euler class epOpd1q ‘Opd2q ‘Opd3qq for each of these cases. In Section 4.4, we
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will compute the local index indq σ [37, Definition 30] of our section at any tangent

circle Cpqq. This local index will give a new invariant on the circles of Apollonius.

4.3.1 CCC

Suppose we are given three general circles Cpp1q, Cpp2q, Cpp3q Ă P2
k. The set of circles

tangent to these three circles are given by the intersection Qpp1q X Qpp2q X Qpp3q.

That is, we are intersecting three degree 2 hypersurfaces in P3
k. This is a special case

of Bézout’s theorem, with the defining equations of Qpp1q, Qpp2q, Qpp3q determining

a section of Op2q‘3 Ñ P3
k.

Proposition 4.11. The bundle Op2q‘3 Ñ P3
k is relatively orientable with Euler class

4H.

Proof. The relative orientability is given by [45, Proposition 3.2], and the Euler class

is computed in [45, Theorem 4.4].

4.3.2 CCP

Suppose we are given two general circles Cpp1q, Cpp2q Ă P2
k and a point p3 P P2

k. If we

consider p3 as a circle of radius squared 0, then we can again use Proposition 4.11 to

check relative orientability and compute the Euler class. However, the local indices

in this context fail to be interesting.

Proposition 4.12. Suppose Cpq1q and Cpq2q are non-degenerate circles with non-

zero radius squared, and suppose Cpq3q is a non-degenerate circle with radius squared

0. Suppose Qpqiqred intersect transversely at a point q with kpqq{k a separable exten-

sion. Then indq σ “ Trkpqq{kH.

Proof. By [9, Theorem 1.3], we may assume that q is k-rational. Since Cpq1q and

Cpq2q are non-degenerate with non-zero radius squared, Qpq1q and Qpq2q are reduced.
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As discussed in Remark 4.10, Qpq3q is a double plane. By the transversality assump-

tion on Qpqiqred, it follows that the intersection multiplicity of the Qpqiq at q is 2.

By [45, Proposition 5.2], it follows that rankpindq σq “ 2, so [57, Theorem 2] implies

indq σ “ H.

The circles of Apollonius for two circles and a point only become interesting

when we treat p3 as a genuine point (rather than as a circle of radius squared 0).

Circles tangent to Cpp1q and Cpp2q and through p3 correspond to the intersection

locus Qpp1q X Qpp2q X V pp3q. This is Bézout’s theorem for the bundle Op2q‘2 ‘

Op1q Ñ P3
k. However, [45, Proposition 3.2] states that this bundle is not relatively

orientable. One can relatively orient the bundle Op2q‘2‘Op1q relative to the divisor

of degenerate circles tc0 “ 0u Ă P3
k (see [45, Section 3.2]), but the Euler class need

not be independent of our choice of section. Nevertheless, we will still discuss the

local indices for the cirlce-circle-point problem in Section 4.4.

4.3.3 CPP

Suppose we are given a circle Cpp1q Ă P2
k and two general points p2, p3 P P2

k. If we

consider p2 and p3 as circles of radius squared 0, then we can again use Proposi-

tion 4.11 to check relative orientability and compute the Euler class. However, the

local indices in this context are again just hyperbolic forms.

Proposition 4.13. Suppose Cpq1q is a non-degenerate circle with non-zero radius

squared, and suppose Cpq2q and Cpq3q are non-degenerate circles with radius squared

0. Suppose Qpqiqred intersect transversely at a point q with kpqq{k a separable exten-

sion. Then indq σ “ Trkpqq{k 2H.

Proof. By [9, Theorem 1.3], we may assume that q is k-rational. Since Cpq1q is

non-degenerate with non-zero radius squared, Qpq1q is reduced. As discussed in

Remark 4.10, Qpq2q and Qpq3q are double planes. By the transversality assumption
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on Qpqiqred, it follows that the intersection multiplicity of the Qpqiq at q is 4. By [45,

Proposition 5.2], it follows that rankpindq σq “ 4.

Since q is k-rational, we may change coordinates such that q “ r1 : 0 : 0 : 0s, the

double plane Qpq2q is defined by Vpαc2
1q for some α P kˆ, and the double plane Qpq3q

is defined by Vppβc1 ` γc2q
2q for some β P k and γ P kˆ. The cone Qpq1q is defined

by VpF q, where F P krc0, . . . , c3s is a degree 2 homogeneous polynomial satisfying

F p1, 0, 0, 0q “ 0. Let f :“ 1
c20
F . Using [36], we calculate indq σ by computing the

EKL form on the local algebra

A :“
krc1, c2, c3spc1,c2,c3q

pf, αc2
1, pβc1 ` γc2q

2q
.

The rank of indq σ is equal to dimk A, so any four k-linearly independent elements ofA

will form a k-basis. Since α and γ are non-zero, it follows that t1, c1, βc1`γc2, c1c2u is

a k-basis of A. Let E P A be the distinguished socle element [64, (4.7) Korollar], and

let φ : AÑ k be any k-linear form satisfying φpEq “ 1. Since c2
1 “ pβc1 ` γc2q

2 “ 0

and

c1c2pβc1 ` γc2q “ γc1c
2
2

“ γ´1c1p´β
2c2

1 ´ 2βγc1c2q

“ 0

in A, the bilinear form Φ : A ˆ A Ñ k given by Φpa, bq “ φpabq has the following

presentation with respect to the basis t1, c1, βc1 ` γc2, c1c2u.

1 c1 βc1 ` γc2 c1c2

1 ˚ ˚ ˚ φpc1c2q

c1 ˚ 0 γ ¨ φpc1c2q 0
βc1 ` γc2 ˚ γ ¨ φpc1c2q 0 0

c1c2 φpc1c2q 0 0 0

The bilinear form Φ is non-degenerate by [36, Lemma 6], so Φ “ 2H in GWpkq.
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We will thus treat p2 and p3 as genuine points (rather than as circles of radius

squared 0). Circles tangent to Cpp1q and through p2, p3 correspond to the intersection

locus Qpp1qXV pp2qXV pp3q. This is Bézout’s theorem for the bundle Op2q‘Op1q‘2 Ñ

P3
k.

Proposition 4.14. The bundle Op2q ‘ Op1q‘2 Ñ P3
k is relatively orientable with

Euler class H.

Proof. The relative orientability and Euler class computation can be found in [45,

Proposition 3.2 and Theorem 4.4].

4.3.4 PPP

Finally, suppose we are given three general points p1, p2, p3 P P2
k. If we consider these

points as circles of radius squared 0, then Proposition 4.1 again gives us relative

orientability and computes the relevant Euler class. However, the intersection of

three general double planes in P3
k will consist of a single point, so the local index will

be equal to the Euler class:

indq σ “ epOp2q‘3
q “ 4H.

As in the previous cases involving points instead of circles, we will treat p1, p2, p3 as

genuine points. The unique circle through p1, p2, p3 corresponds to the intersection

V pp1q X V pp2q X V pp3q. This is Bézout’s theorem for the bundle Op1q‘3 Ñ P3
k.

As for the circle-circle-point problem, this bundle is not relatively orientable by [45,

Proposition 3.2]. One can relatively orient Op1q‘3 relative to the divisor of degenerate

circles tc0 “ 0u Ă P3
k, but the Euler class is equal to the local index and will depend

on the choice of section.
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4.4 Local contributions for Apollonian circles

We now give a geometric interpretation of indq σ in terms of the geometry of the

relevant circles by analyzing the intersection volume. We will assume that the cones

Qppiq intersect transversely, which happens whenever the circles Cppiq are in general

position in P2. (For example, there should not be a single line through the centers

of all three circles.)

Given three circles Cppiq (or points pi), the intersection volume Volpqq at a circle

Cpqq is defined in terms of the gradients of the cones Qppiq (or planes V ppiq) at q. We

will assume that Cppiq and Cpqq are non-degenerate circles, so that their c0 coordinate

in P3
k is non-zero. This allows us to work in the affine patch tc0 ‰ 0u Ă P3

k, where the

twisted covering map of [45, Proposition 3.8] is simply the standard covering map

tc0 ‰ 0u Ñ A3
k. The standard coordinates on tc0 ‰ 0u are p c1

c0
, c2
c0
, c3
c0
q, so the gradient

used to calculate Volpqq will be ∇ “ p B
Bc1
, B

Bc2
, B

Bc3
q.

Notation 4.15. Let zi :“ rai : bi : 1s be the center of Cppiq (or the point pi), and let

r2
i be the radius squared of Cppiq (or 0 for the point pi). Similarly, let γ :“ rα : β : 1s

be the center of the non-degenerate circle Cpqq. Let ρ2 be the radius squared of Cpqq,

which is 0 if Cpqq is simply the point rα : β : 1s. Let τi :“ rsi : ti : 1s P Cppiq X Cpqq

be the point at which Cppiq and Cpqq are tangent.

We will use the following vectors in A2
k (see Figure 4.3):

#  —γzi “ pai ´ α, bi ´ βq,

#  —γτi “ psi ´ α, ti ´ βq,

#   —τizi “ pai ´ si, bi ´ tiq.
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#  —γziCpqq

Cppiq

#  —γτiCpqq

Cppiq #   —τizi

Cpqq

Cppiq

Figure 4.3: Externally tangent circles

Finally, define

ui “

#

#   —τizi ¨
#  —γzi Cppiq a circle,

1 pi a point

vi “

#

#   —τizi ¨
#  —γτi Cppiq a circle,

1 pi a point.

Remark 4.16. If k is an ordered field and r2
i , ρ

2 ą 0, then we can choose distin-

guished radii ri P kp
a

r2
i q and ρ P kp

a

ρ2q such that ri, ρ ą 0. Moreover, any sum

of squares is non-negative, so we can define the norm of a vector w to be the non-

negative square root of w ¨ w. Since the vectors #  —γzi,
#  —γτi, and #  —τzi are all parallel

or anti-parallel, the sign of the dot product of any two of these vectors indicates

whether they are parallel or anti-parallel.

In this context, vi detects whether Cppiq and Cpqq are externally tangent (as in

Figure 4.3) or internally tangent (as in Figures 4.4 and 4.5). Moreover, if Cppiq and

Cpqq are internally tangent, then ui detects whether ρ ą ri (as in Figure 4.4) or

ri ą ρ (as in Figure 4.5). In particular:

• Cppiq and Cpqq are externally tangent if and only if ui, vi ą 0.

• Cppiq and Cpqq are internally tangent with ρ ą ri if and only if ui ă 0 and

vi ă 0.

• Cppiq and Cpqq are internally tangent with ri ą ρ if and only if ui ą 0 and

vi ă 0.
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#  —γziCpqq

Cppiq

#  —γτiCpqq

Cppiq

#   —τizi
Cpqq

Cppiq

Figure 4.4: Internally tangent circles

#  —γziCppiq

Cpqq

#  —γτi
Cppiq

Cpqq

#   —τiziCppiq

Cpqq

Figure 4.5: Internally tangent circles with reversed containment

Lemma 4.17. If Cpqq is tangent to the circles Cppiq (or points pi), then the inter-

section volume is (up to squares)

Volpqq “
ÿ

1ďiď3
măn

p´1qi`1uivmvnppam ´ αqpbn ´ βq ´ pan ´ αqpbm ´ βqq.

In other words, Volpqq is a weighted sum of the signed areas of the parallelograms

spanned by #     —γzm and #   —γzn (see Figure 4.6), where the weights are given in terms of

the dot products ui, vm, and vn.

Proof. If r2
i ‰ 0, we have

∇Qppiq “ p2aipaiX ` biY ` Zq ´ 2r2
iX,

2bipaiX ` biY ` Zq ´ 2r2
i Y,

2paiX ` biY ` Zqq.

Evaluated at q, we haveX “ 2pai´αq, Y “ 2pbi´βq, and Z “ α2´a2
i`β

2´b2
i`r

2
i´ρ

2.

Thus, evaluated at q, we have

∇Qppiq|q “ p2aippai ´ αq2 ` pbi ´ βq2 ` r2
i ´ ρ

2
q ´ 4r2

i pai ´ αq,

2bippai ´ αq
2
` pbi ´ βq

2
` r2

i ´ ρ
2
q ´ 4r2

i pbi ´ βq,

2ppai ´ αq
2
` pbi ´ βq

2
` r2

i ´ ρ
2
qq.
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#   —γzn
#     —γzm

Cppmq

Cppnq

Figure 4.6: Parallelogram of tangent circles

If pi “ rai :bi :1s is a point, then ∇V ppiq “ pai, bi, 1q is independent of the intersection

point q. The intersection volume Volpqq is the determinant of the matrix M with

rows ∇Qppiq|q (or ∇V ppiq). Subtracting α times the third column from the first

column of M and β times the third column from the second column of M , we find

that Volpqq is the determinant of the matrix with ith row

p2pai ´ αqppai ´ αq
2
` pbi ´ βq

2
´ r2

i ´ ρ
2
q, (4.2)

2pbi ´ βqppai ´ αq
2
` pbi ´ βq

2
´ r2

i ´ ρ
2
q,

2ppai ´ αq
2
` pbi ´ βq

2
` r2

i ´ ρ
2
qq

if Cppiq is a circle or

pai ´ α, bi ´ β, 1q “ pvipai ´ αq, vipbi ´ βq, uiq

if pi is a point. Since rsi : ti : 1s P Cppiq X Cpqq, we have r2
i “ psi ´ aiq

2 ` pti ´ biq
2

and ρ2 “ psi ´ αq
2 ` pti ´ βq

2. If Cppiq is a circle, we may thus substitute for r2
i and

ρ2 in Equation 4.2 to obtain 4pvipai´αq, vipbi´βq, uiq. Ignoring the factor of 4 only

changes Volpqq up to squares, so

Volpqq “ det

¨

˝

v1pa1 ´ αq v1pb1 ´ βq u1

v2pa2 ´ αq v2pb2 ´ βq u2

v3pa3 ´ αq v3pb3 ´ βq u3

˛

‚

up to squares.
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5

Geometricity

Results in enumerative geometry often consist of equations relating a fixed count of

objects to a sum of local contributions that depend on the individual objects being

counted:

fixed count “
ÿ

objects

local contribution. (5.1)

For example, in the classical version of the circles of Apollonius, the fixed count is 8,

and each tangent circle gives a local contribution of 1. In A1-enumerative geometry,

both the fixed count and local contributions are GWpkq-valued rather than integer-

valued. In many cases, fixed counts can be computed using a motivic version of

the Euler class [2, 37, 41]. Local contributions are computed as a local index, which

admits a convenient formula in terms of commutative algebra [9, 12, 36].

In order for Equation 5.1 to be an enumerative geometric equation, we need to

give geometric descriptions of the local contributions. Giving a meaningful geometric

interpretation of the local index, which is a priori an algebraic expression, poses one

of the main difficulties in A1-enumerative geometry.
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Question 5.1 (Geometricity). Are local indices always geometric? Can enumerative

problems be classified by the “geometric taxon” of their local indices?

In a sense to be described in Section 5.1, Bézout’s theorem gives a universal ge-

ometric interpretation of local contributions. However, this perspective fails to give

a satisfactory answer to Question 5.1 — Bézout’s theorem gives a geometric inter-

pretation is in terms of the moduli space of the geometric objects in question, rather

than in terms of the intrinsic geometry of the objects themselves. We demonstrated

this concern in Section 4.4 with the circles of Apollonius as a case study. While

the classical statement of the circles of Apollonius can be viewed as a corollary of

Bézout’s theorem, the geometric interpretation given in Lemma 4.17 shows that the

A1-enumerative situation is more subtle.

Remark 5.2. In light of the previous paragraph, we refine Question 5.1 to ask

whether local indices are “intrinsically” geometric, as demonstrated in the following

example.

Example 5.3. The second part of Question 5.1 asks for a taxonomy of enumerative

problems in terms of the geometric interpretations of their local indices. We propose

three potential taxa to give an indication of what this might look like.

(i) Segre involutions play a prominent role in Kass–Wickelgren’s enriched count of

lines on cubic surfaces [37] and Pauli’s count of lines on quintic threefolds [55].

The Segre involution associated to a line L on a cubic surface X swaps points

p, q P L such that TpX “ TqX. Kass and Wickelgren show that the local index

for lines on cubic surfaces is given by the degree of the Segre involution. The

description of Segre involutions associated to lines on quintic threefolds is a

little more complicated, but it again relates to swapping points along a line

whose tangent spaces coincide. Pauli shows that the local index for lines on
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quintic threefolds is given by the degree of a product of three Segre involutions.

In general, one might hope that the local index for counting lines on a degree

2n´ 3 hypersurface in Pn can be described in terms of Segre involutions.

(ii) There are 2 lines meeting 4 lines in P3, and in general a finite number of

lines meeting 2n ´ 2 hyperplanes of dimension n ´ 2 in Pn. Srinivasan and

Wickelgren give an A1-enumerative account of this story when n is odd [62].

For n “ 3, the local index is a difference of cross-ratios associated to the

geometry of the solution lines L,L1, the given lines L1, L2, L3, L4, their various

intersections, and the various planes spanned by pairs of intersecting lines. For

larger n, Srinivasan and Wickelgren geometrically interpret the local index by

a determinantal formula that again depends on the various intersection points

and hyperplanes spanned by pairs of intersecting hyperplanes. This (more

complicated) interpretation recovers the difference of cross-ratios when n “ 3,

so this family of enumerative problems share a common geometric local index.

(iii) In [22], the authors give an enriched count of conics meeting 8 lines in P3. Given

a conic C meeting lines L1, . . . , L8, the local index is geometrically described

in terms of the intersection points C X Li and the slopes of each Li relative to

to the tangent lines TCXLi
C. The local index comes from an explicit section

of the bundle Op1q‘8 Ñ PSym2
pS_q, where S Ñ Gp2, 3q is the tautological

subbundle on the Grassmannian of 2-planes in P3.

In general, there are a finite number of degree n plane curves meeting fpnq :“
`

n`2
n

˘

` 2 lines in P3. The bundle Op1q‘fpnq Ñ PSymn
pS_q is relatively ori-

entable if and only if fpnq “ pn`1qpn`2q
2

` 2 is even (see [22, Lemma 3.1]), which

happens precisely when n is equivalent to 2 or 3 mod 4. In any case, we again

get an explicit section whose associated local index can be described geometri-

cally in terms of the intersection points C X Li and the slopes of Li relative to
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TCXLi
C (where C is now a plane curve of degree n).

From this perspective, the enumerative problems of counting plane curves of

a given degree meeting lines in P3 belong to the same geometric taxon. An

interesting question is whether the problems of counting Pm-curves of a given

degree meeting lines in Pn (with m ď n) also belong to this geometric taxon.

5.1 Intersection volume as a universal local contribution

In classical enumerative geometry, many theorems only become truly enumerative

when objects are counted with multiplicity. Bézout’s theorem is the prototypical

example of this phenomenon: unless intersections are counted with multiplicity, the

product of degrees merely gives an upper bound to the number of intersections. In

this way, intersection multiplicity is a universal local contribution for many classical

enumerative problems. Similarly, Bézout’s theorem gives a universal geometric in-

terpretation of local contributions in A1-enumerative geometry. We will first recall

this geometric interpretation under a transversality assumption. We will then use

Pauli’s enrichment of the dynamic degree (see Section 2.1.2 and [55, 56]) to reduce

to the transverse case.

Definition 5.4. Let f1, . . . , fn P krx1, . . . , xns with corresponding hypersurfaces

Xi :“ Vpfiq Ď An
k . Assume that p P

Ş

iXi is an isolated intersection point with in-

tersection multiplicity ippX1, . . . , Xnq “ rkppq : ks (that is, Xi intersect transversely

at p by [45, Proposition 5.4]). The intersection volume Volppq P kppq of f1, . . . , fn

at p is the volume of the parallelepiped spanned by the gradient vectors ∇fippq. In

other terms,

Volppq “ detp∇f1ppq | . . . | ∇fnppqq

“ Jacpf1, . . . , fnqppq.
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In order to compute the intersection volume for a section σ : X Ñ V of a

relatively oriented vector bundle, we need Nisnevich coordinates and compatible

local trivializations to express σ as an endomorphism of affine space. This intersection

volume will not depend on our choices of such data [37, Corollary 31], but we need to

show that such data are guaranteed to exist. The existence of Nisnevich coordinates

is given by [37, Lemma 19], and the existence of compatible local trivializations was

shown in 2.7. We can now show that the local index of a section σ : X Ñ V at a

simple zero is always given by an intersection volume.

Proposition 5.5. Let X be a k-scheme of dimension n. Let V Ñ X be a relatively

orientable vector bundle of rank n, and let ρ : detV b ωX
–
ÝÑ Lb2 be a relative

orientation of V Ñ X. Let σ : X Ñ V be a section. If p P σ´1p0q is a simple

zero with separable residue field kppq{k, then the local index indp σ is equal to the

intersection volume Trkppq{kxVolppqy.

Proof. This is essentially proved in [45, Lemma 5.5], but we repeat the relevant

details here. Let U Ă X be an open neighborhood of p with Nisnevich coordinates

ϕ : U Ñ An
k , which exist by [37, Lemma 19]. Let ψ : V |U Ñ An

k ˆU Ñ An
k be a local

trivialization of V compatible with the Nisnevich coordinates ϕ and the relative

orientation pρ, Lq, which exists by Proposition 2.7. Then there exist f1, . . . , fn P

krx1, . . . , xns such that

pf1, . . . , fnq “ ψ ˝ σ ˝ ϕ´1 : An
k Ñ An

k .

By [37, Corollary 31], the local index indp σ is well-defined and independent of our

choice of Nisnevich coordinates, compatible trivializations, and functions f1, . . . , fn.

By [37, Proposition 34] (see also [9]), we have indp σ “ Trkppq{k indp̃ σkppq, where p̃ is

the kppq-rational lift of p determined by the extension k Ñ kppq, and σkppq is the base

change of σ. Since p is a simple zero of σ, we have indp̃ σkppq “ xJacpf1, . . . , fnqppqy

by [36, Proposition 15], which is equal to xVolppqy by [45, Section 5.1].
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Since transversality is a generic condition, Theorem 2.26 implies that we can

always interpret the local index indq σ as a sum of local indices in the transverse

setting, even when q is not a simple zero of σ. By Proposition 5.5, we can always

geometrically interpret the local index as a sum of intersection volumes. For example,

Theorem 2.26 allows us to remove the transversality assumption in [45, Theorem 1.2]:

Corollary 5.6. Let f “ pf1, . . . , fnq : An
k Ñ An

k be a morphism with isolated zero p.

Let g1, . . . , gn P krrtssrx1, . . . , xns be such that the hypersurfaces Vpfi ` tgiq Ď Pnkpptqq

meet transversely. Let Y “ Vpf1`tg1, . . . , fn`tgnq Ñ Spec krrtss. If κpzq is separable

over kpptqq for all z P Y p ´ tpu, then

degA1

p pf1, . . . , fnq “
ÿ

zPY p´tpu

Trκpzq{kpptqqxVolpzqy,

where Volpzq is the intersection volume of f1 ` tg1, . . . , fn ` tgn at z.

Proof. We first show that κpzq{kpptqq is separable for all z P Y p ´ tpu. Let Φ : Y p Ñ

Spec krrtss be the structure map, which is finite by Proposition 2.19. By [63, Lemma

02GL (1)], our assumption that kppq{k is separable implies that p “ Spec kppq is

smooth over k. In particular, Φ is smooth at Φ´1p0q “ pY pq0 “ p. By [63, Lemma

01V9], there exists a non-empty open subset U Ď Y p such that p P U and Φ|U is

smooth. But Φ is proper and Y p ´ U is closed, so ΦpY p ´ Uq Ď Spec krrtss is also

closed. Any non-empty closed subset of Spec krrtss contains the sole closed point 0.

Since p R Y p ´ U , we have that ΦpY p ´ Uq is empty and hence Y p “ U (as Φ is

surjective). It follows that Φ is smooth above the generic point, so pY pqt Ñ Spec kpptqq

is smooth. This map also inherits finiteness from Φ, so pY pqt Ñ Spec kpptqq is smooth

of relative dimension 0 and is therefore étale. It now follows from [63, Lemma 02GL

(2)] that κpzq{kpptqq is separable for all z P pY pqt “ Y p ´ tpu.

Since we have assumed that Vpfi ` tgiq meet transversely, [45, Section 3] implies
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that degA1

z pf1 ` tg1, . . . , fn ` tgnq “ Trκpzq{kpptqqxVolpzqy. The result now follows from

Theorem 2.26.

As with the dynamic approach, Theorem 2.28 allows us to remove the transver-

sality assumption in [45, Theorem 1.2].

Corollary 5.7. Assume the conventions of Theorem 2.28. Assume moreover that

away from t “ 0, each fiber VpF qt is geometrically reduced. Then for any c P kˆ, the

perturbation f̃ :“ F |t“c : An
k Ñ An

k of f has a set of zeros Z Ď f̃´1p0q such that

degA1

p pfq “
ÿ

qPZ

Trkpqq{kxVolpqqy,

where Volpqq “ Jacpf̃qpqq.

Proof. By assumption, SpecQc is geometrically reduced, so the components of f̃

meet transversely at each q P Z. Since F is flat and unramified at t “ c, we have

that Vpf̃q Ñ Spec kpcq “ Spec k is étale [63, Lemma 02GU (2) and (4)]. In particular,

kpqq{k is separable for all q P Z [63, Lemma 02GL (1)]. It follows from [45, Section

5.2] that degA1

q pf̃q “ Trkpqq{kxVolpqqy. The desired result now follows directly from

Theorem 2.28.

In summary, the intersection volume is a universal geometric interpretation of the

local indices in A1-enumerative geometry. However, for most enumerative geometric

problems, this interpretation is unsatisfactory — for the circles of Apollonius, the

intersection volume at a tangent circle Cpqq would tell us about the geometry of the

cones Qppiq (or planes V ppiq), rather than about the geometry of the circles Cppiq

(or points pi) and the tangent circle Cpqq. Question 5.1 asks for a more intrinsic

geometric interpretation of indq σ.
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6

Conclusions

We give a brief summary of the results in this dissertation. See Chapter 1 for a

more detailed overview of these results. In classical enumerative geometry, Bézout’s

theorem gives a universal geometric description of the relevant local information —

one counts objects with multiplicity, and this multiplicity arises from an intersection

multiplicity in the moduli space parameterizing the objects being counted. In A1-

enumerative geometry, the local data carries extra structure. One can ask whether

this extra structure always encodes geometric information (Question 5.1).

In Chapter 3, we give an arithmetic enrichment of Bézout’s theorem. The global

count is given by a hyperbolic form (Theorem 3.17), and the local information is

given by the volume of the parallelpiped spanned by the gradient directions of the

relevant hypersurfaces at a given intersection point (Section 3.4). In Proposition 5.5,

we show that this intersection volume, and hence Bézout’s theorem, gives a universal

geometric description for local indices in A1-enumerative geometry.

However, the answer given by Bézout’s theorem does not satisfactorily solve Ques-

tion 5.1. This is because the intersection volume is an interpretation in terms of the

geometry of the moduli spaces parameterizing the objects being counted, rather than
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an interpretation in terms of the geometry of the objects themselves. In Chapter 4,

we illustrate this point by studying the circles of Apollonius. While the circles of

Apollonius in the classical setting are a direct corollary of Bézout’s theorem, the

intersection volume associated to the circles of Apollonius does not a priori tell us

anything about the circles at hand. In Lemma 4.17, we give a geometric interpre-

tation for the circles of Apollonius in terms of the parallelograms spanned by the

centers of the various circles.

Inspired by Pauli and Wickelgren’s dynamic local A1-degree, we discuss how to

compute the local A1-degree at a given point by working in families (Theorem 2.28).

In future work, we will use the familial local A1-degree to give alternative enriched

counts of the circles of Apollonius.
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Appendix A

Computations for circles of Apollonius

In this appendix, we include some code and formulas that are useful in computations

relevant to Chapter 4.

A.1 Solving for the cone of tangent circles

We include a short piece of Sage code that performs the necessary calculation from

Lemma 4.8.

var(’x’,’y’,’z’,’a’,’b’,’r’);

var(’,’.join(’c%s’%i for i in range (3)));

var(’,’.join(’A%s’%i for i in range (1 ,7)));

f = A1*x^2+A2*y^2+A3*z^2+A4*x*z+A5*y*z+A6*x*y;

f = f.subs(z == -a*x-b*y-2*r^2*c0);

f = expand(f.subs(x == c1+2*a*c0, y == c2+2*b*c0));

eqns = [f.coefficient(c0 ,2) == 4*(a^2+b^2-r^2),\

f.coefficient(c1 ,2) == 1,\

f.coefficient(c2 ,2) == 1,\

f.coefficient(c0*c1 ,1) == 4*a,\

f.coefficient(c0*c2 ,1) == 4*b,\

f.coefficient(c1*c2 ,1) == 0];

solve(eqns , A1, A2, A3, A4 , A5 , A6)
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A.2 Coaklay’s equations

For the reader’s convenience, we describe Coaklay’s solution for the circles of Apol-

lonius [20]. Let k be a field with char k ‰ 2. For 1 ď i ď 3, let ai, bi, r
2
i P k and

pi “ r1 : ´2ai : ´2bi : a2
i ` b2

i ´ r2
i s, so that Cppiq P M˝ is the k-rational circle with

center rai : bi : 1s and radius squared r2
i . Let s “ ps1, s2, s3q P t1,´1u3. We first define

∆ “ det

ˆ

a2 ´ a1 a3 ´ a1

b2 ´ b1 b3 ´ b1

˙

“ pa1 ´ a2qpb1 ´ b3q ´ pa1 ´ a3qpb1 ´ b2q

and Dij “ a2
i ´ a

2
j ` b

2
i ´ b

2
j ´pr

2
i ´ r

2
j q. Next, let ri be a square root of r2

i , and define

A1psq “
ps1r1 ´ s2r2qpb1 ´ b3q ´ ps1r1 ´ s3r3qpb1 ´ b2q

∆
,

B1psq “
ps1r1 ´ s3r3qpa1 ´ a2q ´ ps1r1 ´ s2r2qpa1 ´ a3q

∆
,

A2psq “
pb1 ´ b3qD12 ´ pb1 ´ b2qD13

2∆
,

B2psq “
pa1 ´ a2qD13 ´ pa1 ´ a3qD12

2∆
,

Mpsq “ A1psqs1r1 ` A2psq ´ a1,

Npsq “ B1psqs1r1 `B2psq ´ b1.

Finally, let

fsptq “ p1´ A1psq
2
´B1psq

2
qpt´ s1r1q

2 (A.1)

´ 2pMpsqA1psq `NpsqB1psqqpt´ s1r1q

´Mpsq2 ´Npsq2.

Remark A.1. If k is an ordered field, we can specify that ri should be non-negative.

In general, we cannot consistently choose a “preferred” square root of r2
i . However,

once we have picked ri, the other square root ´ri will be accounted for by negating

si in fsptq.
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Remark A.2. Note that ∆ ‰ 0 if and only if the the three centers rai : bi : 1s are

not colinear. It follows that fsptq is well-defined if and only if the circles Cppiq do

not have colinear centers.

Theorem A.3 (Coaklay). The circle Cpr1 : ´2αs : ´2βs : α2
s ` β2

s ´ ρ2
ssq is tangent

to Cpp1q, Cpp2q, Cpp3q, where

αs “ A1psqρs ` A2psq,

βs “ B1psqρs `B2psq,

and ρs is a root of fsptq. Moreover, every circle tangent to Cpp1q, Cpp2q, Cpp3q is

obtained in this manner for some s P t1,´1u3.

Since the roots of fs and f´s coincide, we can recover all circles of Apollonius

with the polynomials fp1,˘1,˘1q.
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