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Abstract. A Toda prime of an integer n is an odd prime p such that 4n = (p − 1)k
with k coprime to p. We conjecture that every positive integer admits at least two Toda
primes. We give a partial proof that every positive integer admits at least one Toda
prime. We conclude by discussing connections to denominators of Bernoulli numbers
and a generalization of Sophie Germain primes.

1. Introduction

The fourth stable homotopy group of spheres is trivial, meaning that πn+4(S
n) = 0 for

all n > 5. In contrast to this, it is a theorem that Sm has no trivial higher homotopy
groups when m ∈ {2, 3, 4, 5}, as we will briefly explain.

Curtis proved that πn(S
4) ̸= 0 for all n ≥ 4 [Cur69]. Curtis also proved that πn(S

2) ̸= 0
for all n ̸≡ 1 mod 8. These same results were obtained (via different methods) by
Mimura, Mori, and Oda [MMO75]. The proof that πn(S

5) ̸= 0 for all n ≥ 5 was given
by Mori [Mor75] and Mahowald [Mah75; Mah82].

Since πn(S
2) ∼= πn(S

3) for all n ≥ 3, the remaining case was πn(S
3) with n ≡ 1 mod 8.

This last case was proved by Gray [Gra84], and later by Ivanov, Mikhailov, and Wu
[IMW16] using different methods. In op. cit., the authors note that [Tod66, Theorem
5.2(ii)] implies that

Z/p ⊆ π2(p−1)k+1(S
3)

whenever gcd(p, k) = 1 [IMW16, p. 342, Equation (B)]. It follows that if every positive
integer n admits an odd prime p and an integer k such that gcd(p, k) = 1 and 4n =
(p−1)k, then πn(S

3) ̸= 0 for all n ≡ 1 mod 8. This leads one to the following definition.

Definition 1.1. Let n be an integer. A Toda prime of n is an odd prime p such that
p−1 | 4n and gcd(p, 4n

p−1
) = 1. Denote the set of Toda primes of n by T (n) (see Table 1),

and let t(n) := |T (n)| (see Figure 1).

If every positive integer has a Toda prime, then one can greatly simplify the proof that
πn(S

3) ̸= 0 for n ≥ 3. This was asked on MathOverflow [Mil18] (and attributed to
Roman Mikhailov) several years ago.

Question 1.2 (Mikhailov). Does every positive integer have a Toda prime?

In fact, it appears that every positive integer has at least two Toda primes.
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Table 1. Sets of Toda primes

n T (n)
1 3, 5
2 3, 5
3 5, 7, 13
4 3, 5, 17
5 3, 11
6 5, 7, 13
7 3, 5, 29
8 3, 5, 17
9 5, 7, 13, 19, 37

10 3, 11, 41

n T (n)
11 3, 5, 23
12 5, 7, 13, 17
13 3, 5, 53
14 3, 5, 29
15 7, 11, 13, 31, 61
16 3, 5, 17
17 3, 5
18 5, 7, 13, 19, 37, 73
19 3, 5
20 3, 11, 17, 41

n T (n)
21 5, 13, 29, 43
22 3, 5, 23, 89
23 3, 5, 47
24 5, 7, 13, 17, 97
25 3, 11, 101
26 3, 5, 53
27 5, 7, 13, 19, 37, 109
28 3, 5, 17, 29, 113
29 3, 5, 59
30 7, 11, 13, 31, 41, 61

Conjecture 1.3. If n is a positive integer, then t(n) ≥ 2.

We tried to answer Question 1.2 in the affirmative, but our approach hits a snag. To
turn our failed attempt into a theorem, we adopt the time-tested tradition of stating
our snag as a conjecture (Conjecture 1.4). We will give some heuristic evidence for this
conjecture in Section 4.

Conjecture 1.4. Let n be an odd, square-free multiple of 3. Assume that there exists
p ∈ {5, 7, 13} such that p | n, and that r ∤ n for r ∈ {5, 7, 13} − {p}. Finally, assume
there exists q ∈ T (3p)− {5, 7, 13} such that q ∤ n. Then t(n) ≥ 4.

Theorem 1.5. Assume Conjecture 1.4. If n is a positive integer, then t(n) ≥ 1. If 5 ∤ n,
then t(n) ≥ 2. If 3 | n, then t(n) ≥ 3.

In Section 2, we state and prove a few simple lemmas. We prove Theorem 1.5 in Section 3
by inducting on the number of odd prime factors of n. Essentially all of the real work
happens in Lemma 3.2. We conclude with Section 5, where we pose a couple questions
that arose while working on this project.

Acknowledgements. We thank Nick Andersen, Pace Nielsen, and Kyle Pratt for help-
ful conversations. The author was partially supported by the NSF (DMS-2502365) and
the Simons Foundation.

2. Some lemmas

There are many elementary statements that one can prove about Toda primes. In this
section, we record a few lemmas and corollaries that we will need en route to Theorem 1.5.

Notation 2.1. Given a positive integer n, let Ω(n) denote the set of prime divisors of
n. Later, we will use the notation ω(n) := |Ω(n)|.

Lemma 2.2. If n is a positive integer, then T (n) ∩ Ω(n) = ∅.
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Proof. Let p be an odd prime factor of n. If p−1 divides 4n, then we have 4n = (p−1)k
for some k. In particular, p | (p − 1)k, so p | k by Euclid’s lemma. It follows that
gcd(p, k) ̸= 1, so p ̸∈ T (n). □

Lemma 2.3. Let a, n be positive integers. Then

T (an) ⊇ T (a) ∪ T (n)− Ω(an).

Proof. Suppose that p ∈ T (a)∪T (n)−Ω(an). Since p ∈ T (a), we have 4a = (p−1)k for
some k coprime to p. Thus 4an = (p− 1)kn, and since p ̸∈ Ω(an), we have kn coprime
to p by Euclid’s lemma. Thus p ∈ T (an). □

Corollary 2.4. If p is prime, then T (pn) ⊇ T (n)− {p}.

Proof. Note that Ω(pn) = Ω(n) ∪ {p}. We have T (n) ∩ Ω(n) = ∅ by Lemma 2.2, so
T (n)− Ω(pn) = T (n)− {p}. The claim thus follows from Lemma 2.3. □

Corollary 2.5. If a | n, then T (an) ⊇ T (n).

Proof. Since a | n, we have Ω(an) = Ω(n). We have seen that T (n) ∩ Ω(n) = ∅
(Lemma 2.2), so T (an) ⊇ T (n)− Ω(n) = T (n) by Lemma 2.3. □

Corollary 2.6. If n is a positive integer, then T (2n) ⊇ T (n).

Proof. Toda primes are odd by definition, so this follows from Corollary 2.4. □

3. Hunting for a Toda prime

To begin our proof of Theorem 1.5, we will use the following lemma to reduce to the
case of 3 | n.

Lemma 3.1. Let p ∈ {3, 5}. If p ∤ n, then p ∈ T (n). In particular:

• If 5 ∤ n, then t(n) ≥ 1.

• If 3, 5 ∤ n, then t(n) ≥ 2.

Proof. Let p ∈ {3, 5}. Then p − 1 | 4n, and gcd(4n, p) = 1 by assumption. Thus
gcd( 4n

p−1
, p) = 1, so p ∈ T (n). □

Next, we characterize the Toda primes of certain multiples of 3 by inducting on ω(n).

Lemma 3.2. Assume Conjecture 1.4. Let n be an odd, square-free multiple of 3. Then
t(n) ≥ 3. Moreover, t(n) = 3 if and only if T (n) = {5, 7, 13}.
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Proof. We will induct on ω(n). Our base cases will consist of ω(n) ≤ 4. Note that
if p ∤ n for each p ∈ {5, 7, 13}, then T (n) ⊇ {5, 7, 13}. In particular, we may restrict
our attention to multiples of these three primes. Moreover, t(ap) ≥ t(a) for any prime
p ̸∈ T (a) by Corollary 2.4, so we may assume that every prime factor p | n is a Toda
prime of some divisor of n.

• The case of ω(n) = 1 is just the calculation T (3) = {5, 7, 13}.

• For ω(n) = 2, we just need to compute t(15) = t(39) = 5 and t(21) = 4.

• For ω(n) = 3, we first compute t(3 · 5 · 7) = 9 and t(3 · 5 · 13) = t(3 · 7 · 13) = 8.
It remains to compute, for each p ∈ {5, 7, 13}, the Toda primes of 3pq for each
q ∈ T (3p). Using the code provided in Appendix A, we find that t(3pq) ≥ 4 for
all such p, q.

• For ω(n) = 4, we first compute t(3·5·7·13) = 16. For the remaining computations
in this case, we use the code in Appendix A.

– If {p, q} ⊆ {5, 7, 13} and r ∈ T (3pq), then t(3pqr) ≥ 9.

– If p ∈ {5, 7, 13} and {q, r} ⊆ T (3p), then t(3pqr) ≥ 7.

– If p ∈ {5, 7, 13}, q ∈ T (3p), and r ∈ T (3pq), then t(3pqr) ≥ 5.

Now let m ≥ 4. Assume that if a is an odd, square-free multiple of 3 such that ω(a) ≤ m,
then t(a) ≥ 3, with t(a) = 3 if and only if T (a) = {5, 7, 13}.

Let n be an odd, square-free multiple of 3 satisfying ω(n) = m + 1. Then there are
distinct primes p1, . . . , pm > 3 such that

n = 3 ·
m∏
i=1

pi.

For each 1 ≤ j ≤ m, let

nj := 3 ·
∏
i ̸=j

pi.

We first prove that t(n) ≥ 3. By our inductive hypothesis, we have t(nj) ≥ 3 for all j. If
t(nj) > 3 for some j, then t(n) ≥ t(nj)− 1 > 2 by Corollary 2.4. We may thus assume
that t(nj) = 3 for all j. Similarly, if pj ̸∈ T (nj) for some j, then t(n) ≥ t(nj) ≥ 3,
so we may assume that pj ∈ T (nj) for all j. But since t(nj) = 3 for all j, we have
T (nj) = {5, 7, 13} by the inductive hypothesis. Thus pj ∈ {5, 7, 13} for all 1 ≤ j ≤ 4,
contradicting our assumption that pi ̸= pj for i ̸= j. It follows that t(n) ≥ 3.

It remains to show that t(n) = 3 if and only if T (n) = {5, 7, 13}. Assume that t(n) = 3.
Suppose that T (n) ̸= {5, 7, 13}. By our inductive hypothesis, we have t(nj) ≥ 3 for all
j, with t(nj) = 3 if and only if T (nj) = {5, 7, 13}. Corollary 2.4 states that T (n) ⊇
T (nj) − {pj}. Thus if t(nj) = 3 and pj ̸∈ {5, 7, 3}, then T (n) = {5, 7, 13}, as desired.
We may therefore assume that if t(nj) = 3, then pj ∈ {5, 7, 13}. We thus have at most
three j such that t(nj) = 3.
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Note that if n is coprime to each of 5, 7, and 13, then T (n) ⊇ {5, 7, 13}, so our assumption
that t(n) = 3 implies that T (n) = {5, 7, 13}. We may thus assume that there is at
least one j such that pj ∈ {5, 7, 13}. Moreover, if there exist two such factors, say
pi, pj ∈ {5, 7, 13}, then we have pi ∈ T (nj) and pj ∈ T (ni). But pi | nj and pj | ni, so
this would contradict Lemma 2.2. Thus n is divisible by exactly one of 5, 7, and 13. We
may thus assume p1 ∈ {5, 7, 13} and pi ̸∈ {5, 7, 13} for i > 1.

Now T (n1) = {5, 7, 13}, and T (n) ⊇ {5, 7, 13}−{p1}. Since t(n) = 3, there is some prime
q ∈ T (n)− {5, 7, 13}. Applying Corollary 2.4 again, we have that t(n) = 3 ≥ t(nj)− 1,
so t(nj) ≤ 4 for all j. As T (n) ⊇ T (nj) − {pj}, we find that if t(nj) = 4, then T (nj) =
T (n) ∪ {pj}. Thus q ∈ T (nj) for all j > 1, and hence T (nj) = {5, 7, 13, q, pj} − {p1}.

By definition, q − 1 | 4nj for all j > 1, so q − 1 divides

gcd(4n2, . . . , 4nm) = 12p1.

That is, q ∈ T (3p1) − {5, 7, 13}. Together with our previous observation that p1 ∈
{5, 7, 13} and pi ̸∈ {5, 7, 13} for i > 2, Conjecture 1.4 now implies that t(n) ≥ 4. This
contradicts our assumption that t(n) = 3, and hence we find that T (n) = {5, 7, 13}.

The converse consists of counting to three, and we are done. □

As a corollary, we (conditionally) find that if 3 | n, then t(n) ≥ 3.

Corollary 3.3. Assume Conjecture 1.4. If 3 | n, then t(n) ≥ 3.

Proof. By Corollary 2.5, we may assume that n is square-free. By Corollary 2.6, we may
further assume that n is odd. The result now follows from Lemma 3.2. □

Combining Lemma 3.1 and Corollary 3.3 gives us Theorem 1.5. In order to go from t(n) ≥
1 to t(n) ≥ 2 (assuming Conjecture 1.4), we would need to prove that t(5a) ≥ 2 for any
odd, square-free a that is coprime to 15. This seems much harder than Corollary 3.3. The
qualitative difference between these two cases is that there are multiples of 5 with distinct
Toda sets of size 2, such as T (5) = {3, 11} and T (55) = {3, 23}, while T (n) = {5, 7, 13}
whenever 3 | n and t(n) = 3 (assuming Conjecture 1.4).

4. Heuristic for Conjecture 1.4

The criteria in Conjecture 1.4 imply that {5, 7, 13, q} − {p} ⊆ T (n). In particular,
t(n) ≥ 3 for any such n. In this section, we will explain why we expect t(n) ≥ 4 for such
n.

Firstly, if there exists q′ ∈ T (3p)−{5, 7, 13, q} such that q′ ∤ n, then {5, 7, 13, q, q′}−{p} ⊆
T (n), and we are done. In fact, the Toda primes of n are precisely those primes among
{2d+ 1 : d | 2n} that are not factors of n. Thus if

(4.1) {2d+ 1 prime : d | 2n} − (Ω(n) ∪ {5, 7, 13, q})
is non-empty, then t(n) ≥ 4. Our heuristic for Conjecture 1.4 is that the set {2d+1 : d |
2n} consists of 2ω(n)+1 elements, while Ω(n) ∪ {5, 7, 13, q} consists of ω(n) + 3 elements.
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Table 2. Minimal t(a) for Conjecture 1.4

n Υ(n)
2 4
3 4
4 5
5 7
6 7
7 7
8 11

The discrepancy between the growth of {2d+1 : d | 2n} and ω(n) holds for any n, not just
those satisfying the assumptions of Conjecture 1.4. However, computations suggest that
there is no bound on ω(n) among integers with t(n) ≤ 3 when no further assumptions
are placed on n. The assumptions of Conjecture 1.4 imply that any counterexample
would need to be divisible by essentially all Toda primes of its divisors, which provides
an upper bound on the size of n for a given ω(n) and hence a lower bound on the density
of primes in the relevant interval.

Roughly, a non-optimal bound for such n with ω(n) = m + 1 is given by setting n =
3p1 · · · pm, with p1 ∈ {5, 7, 13} and pi+1 = 12p1 · · · pi + 1 for each 1 ≤ i ≤ m. One can
then calculate pi+1 = 12ip1 +

∑i−1
j=0 12

j, and hence n = 3 · 12m2−m
2 pm1 + o(pm−1

1 ). The
density of primes less than 4n + 1 is bounded below by log(4n + 1)−1, which (ignoring
lower order terms) is about(

m2 −m+ 2

2
log(12) +m log(p1)

)−1

.

Now, it should be noted that the author is not an analyst, so the above may be rife with
error. But it appears that the growth of the number of candidate Toda primes, i.e. the
set {2d + 1 : d | 2n}, outstrips the growth of Ω(n) and the dropping density of primes
less than the largest Toda candidate, and so we expect Equation (4.1) to be non-empty.

To conclude this section, we present some computational evidence for Conjecture 1.4 in
Table 2. Among the set of n satisfying the criteria of Conjecture 1.4, we calculate the
minimal t(n) for a given ω(n). To introduce notation, let

Υ(n) = min{t(a) : ω(a) = n and a satisfies the assumptions of Conjecture 1.4}.
Since t(ap) ≥ t(a) for any prime p ̸∈ T (a) (Corollary 2.4), we may restrict our attention
to n such that every prime factor p | n is a Toda prime of some divisor of n. Some rough
code for this computation can be found in Appendix A.

Remark 4.1. In the range we have computed, we have Υ(n) = a(n+4)−1, where a(n)
is given by [OEIS, A118096]. However, this coincidence should not continue, as A118096
has terms satisfying a(n+1) < a(n)− 1, whereas we expect Υ(n+1) ≥ Υ(n)− 1 for all
n in light of Corollary 2.4.

https://oeis.org/A118096
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5. Some observations

It took a fair amount of floundering to come up with the induction argument used in
Lemma 3.2. Along the way, we noticed a few things that seem worth mentioning.

5.1. Bernoulli denominators. There is a close connection between Bernoulli denomi-
nators and Toda primes. We will introduce this relationship by characterizing the Toda
primes of primes greater than 5.

Proposition 5.1. Assume p ≥ 7 is a prime. Let φ denote the totient function. If
φ(x) = 4p for some integer x, then T (p) = {3, 5, 2p + 1} or {3, 5, 4p + 1}. Otherwise,
T (p) = {3, 5}.

Proof. One can directly check that 3, 5 ∈ T (p) for all primes greater than 5. Now
by Euler’s product formula, we have φ(x) = pe1−1

1 (p1 − 1) · · · pem−1
m (pm − 1), where

x =
∏m

i=1 p
ei
i is the prime factorization of x. It follows that there exists x such that

φ(x) = 4p if and only if one of the following cases holds:

(i) x = 22 · q, where q is an odd prime such that q − 1 = 2p. In this case, q is a Toda
prime of p with 4p

q−1
= 2.

(ii) x = 2r · 3 · q, where r ∈ {0, 1} and q is an odd prime such that q − 1 = 2p. In this
case, q is a Toda prime of p with 4p

q−1
= 2.

(iii) x = 2r · q, where r ∈ {0, 1} and q is an odd prime such that q − 1 = 4p. In this
case, q is a Toda prime of p with 4p

q−1
= 1.

(iv) x = 2r · 52, where r ∈ {0, 1} (in which case p = 5). This case is not relevant for
this lemma, as we have assumed p ≥ 7.

It remains to show that no other primes can be the Toda prime of p. To this end, let
q > 5 be a Toda prime of p. Then q − 1 | 4p, so we either have q − 1 = 4p or q − 1 = 2p
(as q−1 is even and p is odd). The existence of such a q gives us a solution to φ(x) = 4p
as outlined in cases (i), (ii), and (iii).

To conclude, we need to show that we cannot have two odd primes q1, q2 such that
q1 − 1 = 2p and q2 − 1 = 4p. In other words, we need to show that there is no prime
p ≥ 7 such that both 2p + 1 and 4p + 1 are prime. It in fact suffices to assume p > 3
here: under this assumption, p ̸≡ 0 mod 3, which implies that either 2p+1 or 4p+1 is
divisible by 3. In particular, at most two of p, 2p+1, 4p+1 can be prime when p > 3. □

Remark 5.2. The sequence of primes (greater than 5) with t(p) = 2 and t(p) = 3 can
be found at [OEIS, A043297 and A087634], respectively. In particular, for all primes
other than 5, we have t(p) = 2 if and only if the denominator of the Bernoulli number
B4p is 30, which we now prove.

Proposition 5.3. Let D2n denote the denominator of the Bernoulli number B2n. For
all primes other than 5, we have t(p) = 2 if and only if D4p = 30.

https://oeis.org/A043297
https:\oeis.org/A087634
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Proof. We can check the claim directly for p = 2 and p = 3, so we may assume p > 5.
To begin, assume t(p) = 2. Since p > 5, we have T (p) = {3, 5} by Proposition 5.1. By
the von Staudt–Clausen theorem, D4p is the product of all primes q such that q− 1 | 4p.
Clearly q = 2, 3, 5 all satisfy this condition, so 30 | D4p. The only other candidates for q
are q = 2p+1 and q = 4p+1. But gcd(2p+1, 2) = gcd(4p+1, 1) = 1, so either of these
options would be a Toda prime of p if they were prime. Since 2p + 1, 4p + 1 ̸∈ T (p), it
follows that 2p+ 1 and 4p+ 1 are not prime, and thus D4p = 30.

Now assume that D4p = 30. Then the only primes q such that (q − 1) | 4p are 2, 3, and
5, so t(p) ≤ 2. It follows that t(p) = 2, as desired. □

Other results analogous to Proposition 5.3 are more or less straightforward to prove on
a case-by-case basis. For example:

Proposition 5.4. The following statements are true:

(i) If D12m = 2730, then T (3m) = {5, 7, 13}.

(ii) If D20m = 330, then T (5m) = {3, 11}.

(iii) If D60m = 56786730, then T (15m) = {7, 11, 13, 31, 61}.

We have omitted the proof of Proposition 5.4 for the sake of brevity. The strategy is to
show that if p is an odd prime factor of the Bernoulli denominator but not a Toda prime
of n, then there are additional shifted primes dividing 4n. This leads us to the following
conjecture.

Notation 5.5. Given an even integer 2m, let P (2m) denote the set of primes such that
p− 1 | 2m, so that D2m =

∏
p∈P (2m) p. Let F (d) = min{2m > 0 : D2m = d} [PW23].

Conjecture 5.6. Let d be a Bernoulli denominator.

(i) If F (d) = 4a for some integer a, then T (am) = T (a) whenever D4am = D4a.

(ii) If D4am ̸= D4a = d, then t(am) ≥ t(a).

The inequality in Conjecture 5.6 (ii), if true, is tight. For example, T (55) = {3, 23} (so
t(55) = t(5)), while D220 = 7590 ̸= 330 = D20. Note that our proof of Corollary 3.3
conditionally proves Conjecture 5.6 for a = 3. Proving Conjecture 5.6 (ii) for a = 3 and
a = 5 would resolve Conjecture 1.3.

5.2. Germane primes and two wavefronts. Proposition 5.3 and Proposition 5.4 are
special cases of Conjecture 5.6 (i). It is clear that the same procedure should yield a
proof of Conjecture 5.6 (i) for any chosen Bernoulli denominator, but it is unclear how
to bootstrap the proof to the general case. Our best guess is as follows. One would need
to show that if p | m for p ∈ T (a) − {3, 5}, then there exists an odd prime q ̸∈ T (a)
such that q − 1 | 4am. To prove Proposition 5.4, one can show that there exists an odd
prime q ̸∈ T (a) ∪ {3, 5} such that q − 1 | 4pa. It therefore suffices to show that at least
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one element of {2pi+ 1 : i | 2a} is prime. We summarize this approach in the following
lemma.

Lemma 5.7. Let d be a Bernoulli denominator with F (d) = 4a for some integer a. If
{2pi + 1 : i | 2a} contains a prime number for each p ∈ T (a), then Conjecture 5.6 (i)
holds for this Bernoulli denominator.

Proof. We know that p− 1 | 4a with gcd( 4a
p−1

, p) = 1 for all p ∈ T (a). Thus p− 1 | 4am,
and we have gcd(4am

p−1
, p) = 1 if and only if p ∤ m. It therefore suffices to show that if

p | m for some p ∈ T (a), then D4am > D4a.

Suppose p | m. If p ∈ T (a), then p ∤ a, and hence any prime of the form q = 2pi+1 (with
i | 2a) cannot satisfy q − 1 | 4a. In particular, q ̸∈ T (a). So if {2pi+ 1 : i | 2a} contains
a prime number q, then q − 1 | 4am and q − 1 ∤ 4a. Thus D4am > D4a, as desired. □

A naïve guess is that {2pi+ 1 : i | 2a} contains a prime of the form p(q − 1) + 1, where
q ∈ Ω(d). This led us to plot the first 1000 odd primes against the proportion of primes
among {p(q − 1) + 1}, where q ranges among the first 10000 odd primes (see Figure 2).
There appear to be two families or wavefronts of primes in this plot, which we cannot
explain. In this range, the Sophie Germain primes all belong to the lower wavefront.

Definition 5.8. A prime is called germane if it is of the form p(q− 1)+ 1, where p and
q are both prime. We will call p and q the width and length, respectively, of p(q− 1)+1.
For example, every Sophie Germain prime is the width of a length 3 germane prime,
while 3 is the only germane prime of length 2. We will also say that a germane prime of
width p is germane to p.

Question 5.9. Given an odd prime p, let rp(n) denote the ratio of width p germane
primes among {p(q − 1) + 1}, where q ranges among the first n odd primes. Does the
double wavefront pattern in Figure 2 persist in the limit

lim
n→∞

{(p, rp(n)) : p prime}?

Is there a qualitative description (beyond the frequency of primes germane to p) of the
primes falling into each of these two families?

Question 5.10. In Figure 3, we plot all germane primes of width p (horizontal axis)
and length q (vertical axis), where p and q range among the first 1000 primes. There
are vertical lines indicating primes that are the width of very few germane primes, and
horizontal lines indicating primes that are rarely the length of a germane prime. Can
any of these lines be explained?

Question 5.11. Given a prime r, let w(r) = #{p prime : r germane to p}. Given an
integer n ≥ 0, what is the density of the level set

{r prime : w(r) = n}?
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It appears that the drop-off of these densities is quite stark, with primes satisfying
w(r) = 6 apparently only occurring every 80000 primes or so.

Appendix A. Code

Here is a basic Sage program for computing T (n) and t(n), along with computations of
t(n) for ω(n) = 3 and ω(n) = 4 when n is divisible by 3p for p ∈ {5, 7, 13}.

# Computing the set of Toda primes
def T(n):

S = [];
for i in divisors (2*n):

d = 2*i;
if is_prime(d+1) and gcd(d+1,4*n/d) == 1:

S.append(d+1);
return(S)

# omega(n) = 3 case
print(’p’,’q’,’t(3pq)’)
for p in [5 ,7,13]:

for q in T(3*p):
print(p,q,len(T(3*p*q)))

# omega(n) = 4 case
# p,q in {5,7,13}, r in T(3pq)
print(’p’,’q’,’r’,’t(3pqr)’)
for Q in Combinations ([5 ,7 ,13] ,2):

for r in T(3* prod(Q)):
n = 3*prod(Q)*r;
print(Q[0],Q[1],r,len(T(n)))

# p in {5,7,13}, q,r in T(3p)
print(’p’,’q’,’r’,’t(3pqr)’)
for p in [5 ,7,13]:

for Q in Combinations(T(3*p),2):
n = 3*p*prod(Q);
print(p,Q[0],Q[1],len(T(n)))

# p in {5,7,13}, q in T(3p), r in T(3pq)
print(’p’,’q’,’r’,’t(3pqr)’)
for p in [5 ,7,13]:

for q in T(3*p):
for r in T(3*p*q):

n = 3*p*q*r;
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print(p,q,r,len(T(n)))

Here is code for calculating the minimal t(n) over all n satisfying the assumptions of
Conjecture 1.4 and with a given ω(n). We used ChatGPT-5.1 to define the recursive
functions select_toda_primes and select_recursive, so these could certainly be im-
proved.

The search space of n grows very rapidly as ω(n) increases. It took our machine about
10 hours to calculate minimal(8). One could significantly cull the search space for
minimal(omega) by taking those n among the search space for minimal(omega-k) sat-
isfying len(T(n)) < minimal(omega-k)+k and then selecting k more prime factors from
among the relevant sets of Toda primes, since each additional prime factor can decrease
t(n) by at most 1.

# Computing the set of Toda primes
def T(n):

S = [];
for i in divisors (2*n):

d = 2*i;
if is_prime(d+1) and gcd(d+1,4*n/d) == 1:

S.append(d+1);
return(S)

def select_toda_primes(m,n):
results = []
select_recursive(m, n, [], results)
return(results)

def select_recursive(m_needed ,current_n ,collected ,\
results ):

# If done , record the result
if m_needed == 0:

results.append(collected.copy ())
return

current_T = T(current_n)

# Take k primes from T(current_n)
for k in range(1,min(len(current_T), m_needed )+1):

# Choose all combinations of size k
for combo in Combinations(current_T , k):

new_collected = collected + list(combo)
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# Multiply n by product of chosen primes
prod = 1
for p in combo:

prod *= p
next_n = current_n * prod

# Recurse for remaining primes
select_recursive(m_needed -k, next_n ,\
new_collected , results)

# Check if list of primes satisfies criteria
# of conjecture
def satisfies_criteria(n,p):

basic_primes = list(set([5,7,13])-set([p]))
todas = list(set(T(3*p))-set ([5 ,7 ,13]))
if all([n % q != 0 for q in basic_primes ])\
and any([n % q != 0 for q in todas ]):

return(True)
else: return(False)

# Calculate min t(n)
def minimal(omega):

min = 10^10
for p in [5 ,7,13]:

for primes in select_toda_primes(omega -2,3*p):
n = 3*p*prod(primes)
if satisfies_criteria(n,p)\
and len(T(n)) < min:

min = len(T(n))
return(min)
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Figure 1. t(n) for n ≤ 100000

Figure 2. Ratio of primes germane to p
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Figure 3. Width versus length of germane primes
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