TODA PRIMES

STEPHEN MCKEAN

ABSTRACT. A Toda prime of an integer n is an odd prime p such that 4n = (p — 1)k
with k coprime to p. We conjecture that every positive integer admits at least two Toda
primes. We give a partial proof that every positive integer admits at least one Toda
prime. We conclude by discussing connections to denominators of Bernoulli numbers
and a generalization of Sophie Germain primes.

1. INTRODUCTION

The fourth stable homotopy group of spheres is trivial, meaning that m,.4(S™) = 0 for
all n > 5. In contrast to this, it is a theorem that S™ has no trivial higher homotopy
groups when m € {2,3,4,5}, as we will briefly explain.

Curtis proved that m,(S*) # 0 for all n > 4 [Cur69|. Curtis also proved that 7, (5?%) # 0
for all n # 1 mod 8. These same results were obtained (via different methods) by
Mimura, Mori, and Oda [MMOT5|. The proof that m,(S°) # 0 for all n > 5 was given
by Mori [Mor75] and Mahowald [Mah75; Mah82].

Since m,(5?) 2 7,(S?) for all n > 3, the remaining case was 7,(S%) with n =1 mod 8.
This last case was proved by Gray |Gra84], and later by Ivanov, Mikhailov, and Wu
[IMW16| using different methods. In op. cit., the authors note that |[Tod66, Theorem
5.2(ii)] implies that
Z]p C 7T2(p71)k+1(53)

whenever ged(p, k) = 1 [IMWI16, p. 342, Equation (B)|. It follows that if every positive
integer n admits an odd prime p and an integer k such that ged(p, k) = 1 and 4n =
(p—1)k, then 7,(S®) # 0 for alln =1 mod 8. This leads one to the following definition.

Definition 1.1. Let n be an integer. A Toda prime of n is an odd prime p such that
p—1|4n and ged(p, ;T"l) = 1. Denote the set of Toda primes of n by T'(n) (see|Table 1)),

and let t(n) := |T'(n)]| (see [Figure 1).

If every positive integer has a Toda prime, then one can greatly simplify the proof that
7,(S%) # 0 for n > 3. This was asked on MathOverflow |[Mill8| (and attributed to
Roman Mikhailov) several years ago.

Question 1.2 (Mikhailov). Does every positive integer have a Toda prime?

In fact, it appears that every positive integer has at least two Toda primes.
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TABLE 1. Sets of Toda primes

n | T(n) n|T(n) n|T(n)
13,5 111 3,5,23 211 5,13,29,43
213,5 12 15,7,13,17 22 3,5,23,89
315,7,13 131 3,5,53 23| 3,5,47
403,517 14| 3,5,29 924 | 5,7.13,17,97
513,11 15| 7,11,13, 31,61 95 | 3,11,101
65,713 16 3,5,17 2% | 3,5,53
713,5,29 17 13,5 2715,7,13,19,37,109
813,517 18 |5,7,13,19,37,73 28 13,5,17,29,113
915,7,13,19,37 1913,5 29 13,5,59
10 | 3,11, 41 20| 3,11,17, 41 30| 7,11,13,31,41,61

Conjecture 1.3. If n is a positive integer, then t(n) > 2.

We tried to answer |Question 1.2| in the affirmative, but our approach hits a snag. To
turn our failed attempt into a theorem, we adopt the time-tested tradition of stating
our snag as a conjecture ((Conjecture 1.4)). We will give some heuristic evidence for this

conjecture in [Section 4}

Conjecture 1.4. Let n be an odd, square-free multiple of 3. Assume that there exists
p € {5,7,13} such that p | n, and that r ¥ n for r € {5,7,13} — {p}. Finally, assume
there exists g € T'(3p) — {5, 7,13} such that g{n. Then t(n) > 4.

Theorem 1.5. Assume|Conjecture 1.4 If n is a positive integer, then t(n) > 1. If5 1 n,
then t(n) > 2. If 3 | n, then t(n) > 3.

In[Section 2| we state and prove a few simple lemmas. We prove[Theorem 1.5]in[Section 3|
by inducting on the number of odd prime factors of n. Essentially all of the real work

happens in [Lemma 3.2l We conclude with [Section 5] where we pose a couple questions

that arose while working on this project.

Acknowledgements. We thank Nick Andersen, Pace Nielsen, and Kyle Pratt for help-
ful conversations. The author was partially supported by the NSF (DMS-2502365) and
the Simons Foundation.

2. SOME LEMMAS

There are many elementary statements that one can prove about Toda primes. In this
section, we record a few lemmas and corollaries that we will need en route to

Notation 2.1. Given a positive integer n, let 2(n) denote the set of prime divisors of
n. Later, we will use the notation w(n) := |Q(n)|.

Lemma 2.2. Ifn is a positive integer, then T'(n) N Q(n) = @.
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Proof. Let p be an odd prime factor of n. If p—1 divides 4n, then we have 4n = (p—1)k
for some k. In particular, p | (p — 1)k, so p | k by Euclid’s lemma. It follows that

ged(p, k) # 1,50 p € T(n). O

Lemma 2.3. Let a,n be positive integers. Then

T(an) 2 T(a) UT(n) — Q(an).
Proof. Suppose that p € T'(a) UT(n) —Q(an). Since p € T'(a), we have 4a = (p— 1)k for
some k coprime to p. Thus 4an = (p — 1)kn, and since p & Q(an), we have kn coprime
to p by Euclid’s lemma. Thus p € T'(an). O
Corollary 2.4. If p is prime, then T(pn) 2 T(n) — {p}.

Proof. Note that Q(pn) = Q(n) U {p}. We have T'(n) N Q2(n) = @ by [Lemma 2.2] so
T'(n) — Q(pn) = T(n) — {p}. The claim thus follows from |[Lemma 2.3 O

Corollary 2.5. Ifa | n, then T'(an) 2 T'(n).

Proof. Since a | n, we have Q(an) = Q(n). We have seen that T'(n) N Q(n) = @
([Comima 2.9), so T(an) 2 T(n) — ©(n) = T(n) by [Comma 2.3 0

Corollary 2.6. If n is a positive integer, then T'(2n) 2 T'(n).

Proof. Toda primes are odd by definition, so this follows from [Corollary 2.4] O

3. HUNTING FOR A TODA PRIME

To begin our proof of [Theorem 1.5 we will use the following lemma to reduce to the
case of 3 | n.

Lemma 3.1. Let p € {3,5}. If ptn, then p € T(n). In particular:
e If51n, then t(n) > 1.
e [f3,51n, then t(n) > 2.

Proof. Let p € {3,5}. Then p — 1 | 4n, and ged(4n,p) = 1 by assumption. Thus
gcd([%,p)zl, sop € T(n). O

Next, we characterize the Toda primes of certain multiples of 3 by inducting on w(n).

Lemma 3.2. Assume|Conjecture 1.4 Let n be an odd, square-free multiple of 3. Then
t(n) > 3. Moreover, t(n) =3 if and only if T'(n) = {5,7,13}.




4 STEPHEN MCKEAN

Proof. We will induct on w(n). Our base cases will consist of w(n) < 4. Note that
if p t n for each p € {5,7,13}, then T'(n) 2 {5,7,13}. In particular, we may restrict
our attention to multiples of these three primes. Moreover, t(ap) > t(a) for any prime

p & T(a) by [Corollary 2.4] so we may assume that every prime factor p | n is a Toda

prime of some divisor of n.
e The case of w(n) =1 is just the calculation T'(3) = {5, 7, 13}.
e For w(n) = 2, we just need to compute ¢(15) = ¢#(39) = 5 and t(21) = 4.

e For w(n) = 3, we first compute £(3-5-7) =9 and t(3-5-13) =¢(3-7-13) = 8.
[t remains to compute, for each p € {5,7,13}, the Toda primes of 3pq for each

q € T'(3p). Using the code provided in [Appendix Al we find that ¢(3pg) > 4 for
all such p, q.

e For w(n) = 4, we first compute ¢(3-5-7-13) = 16. For the remaining computations

in this case, we use the code in [Appendix A]
— It {p,q} € {5,7,13} and r € T(3pq), then t(3pgr) > 9.
— It pe {5,7,13} and {q,r} C T(3p), then t(3pgr) > 7.
— It pe {5,713}, g € T(3p), and r € T(3pq), then t(3pqr) > 5.

Now let m > 4. Assume that if a is an odd, square-free multiple of 3 such that w(a) < m,
then t(a) > 3, with ¢(a) = 3 if and only if T'(a) = {5,7, 13}.

Let n be an odd, square-free multiple of 3 satisfying w(n) = m + 1. Then there are
distinct primes py,...,p, > 3 such that

n=3: le-.
i=1
For each 1 <75 < m, let

n; ::3-Hpi.

We first prove that ¢(n) > 3. By our inductive hypothesis, we have t(n;) > 3 for all j. If
t(n;) > 3 for some j, then ¢(n) > t(n;) — 1 > 2 by [Corollary 2.4, We may thus assume
that ¢(n;) = 3 for all j. Similarly, if p; & T'(n;) for some j, then t(n) > t(n;) > 3,
so we may assume that p; € T(n;) for all j. But since ¢(n;) = 3 for all j, we have
T'(n;) = {5,7,13} by the inductive hypothesis. Thus p; € {5,7,13} for all 1 < j < 4,
contradicting our assumption that p; # p; for ¢ # j. It follows that t(n) > 3.

It remains to show that ¢(n) = 3 if and only if T'(n) = {5,7,13}. Assume that ¢(n) = 3.
Suppose that T'(n) # {5,7,13}. By our inductive hypothesis, we have ¢(n;) > 3 for all
J, with t(n;) = 3 if and only if T'(n;) = {5,7,13}. states that T'(n) D
T(n;) — {p;}. Thus if t(n;) = 3 and p; & {5,7,3}, then T'(n) = {5,7,13}, as desired.
We may therefore assume that if ¢(n;) = 3, then p; € {5,7,13}. We thus have at most
three j such that ¢(n;) = 3.
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Note that if n is coprime to each of 5, 7, and 13, then T'(n) 2 {5,7, 13}, so our assumption
that ¢(n) = 3 implies that T'(n) = {5,7,13}. We may thus assume that there is at
least one j such that p; € {5,7,13}. Moreover, if there exist two such factors, say
pi,p; € {5,7,13}, then we have p; € T'(n;) and p; € T'(n;). But p; | n; and p; | n;, so
this would contradict [Lemma 2.2l Thus n is divisible by exactly one of 5, 7, and 13. We
may thus assume p; € {5,7,13} and p; & {5,7,13} for i > 1.

Now T'(ny) = {5,7,13}, and T'(n) 2 {5,7,13} —{p1 }. Since t(n) = 3, there is some prime

q € T(n) —{5,7,13}. Applying |Corollary 2.4| again, we have that t(n) = 3 > t(n;) — 1,
so t(n;) <4 forall j. As T'(n) D T'(n;) — {p;}, we find that if ¢(n;) = 4, then T'(n;) =
T'(n)U{p,;}. Thus ¢ € T'(n;) for all j > 1, and hence T'(n;) = {5,7,13,¢,p;} — {m }-

By definition, ¢ — 1 | 4n; for all j > 1, so ¢ — 1 divides
ged(4nag, . .. 4ngy,) = 12p;.

That is, ¢ € T(3p1) — {5,7,13}. Together with our previous observation that p; €
{5,7,13} and p; & {5,7,13} for i > 2, |Conjecture 1.4 now implies that t(n) > 4. This
contradicts our assumption that ¢(n) = 3, and hence we find that T'(n) = {5,7,13}.

The converse consists of counting to three, and we are done. U

As a corollary, we (conditionally) find that if 3 | n, then ¢(n) > 3.

Corollary 3.3. Assume|Conjecture 1.4. If 3| n, then t(n) > 3.

Proof. By [Corollary 2.5 we may assume that n is square-free. By we may
further assume that n is odd. The result now follows from [Lemma 3.21 g

Combining[Lemma 3.1]and[Corollary 3.3|gives us[Theorem 1.5 In order to go from ¢(n) >
1 to t(n) > 2 (assuming [Conjecture 1.4)), we would need to prove that ¢(5a) > 2 for any
odd, square-free a that is coprime to 15. This seems much harder than[Corollary 3.3} The
qualitative difference between these two cases is that there are multiples of 5 with distinct
Toda sets of size 2, such as T'(5) = {3,11} and T'(55) = {3,23}, while T'(n) = {5,7,13}

whenever 3 | n and t(n) = 3 (assuming [Conjecture 1.4)).

4. HEURISTIC FOR [CONJECTURE 1.4|

The criteria in [Conjecture 1.4] imply that {5,7,13,¢} — {p} € T'(n). In particular,
t(n) > 3 for any such n. In this section, we will explain why we expect t(n) > 4 for such
n.

Firstly, if there exists ¢’ € T'(3p)—{5,7, 13, ¢} such that ¢’ f n, then {5,7,13,¢,¢'}—{p} C
T(n), and we are done. In fact, the Toda primes of n are precisely those primes among
{2d+1:d | 2n} that are not factors of n. Thus if

(4.1) {2d + 1 prime : d | 2n} — (Q(n) U {5,7,13,q})

is non-empty, then t(n) > 4. Our heuristic for [Conjecture 1.4]is that the set {2d+1: d |
2n} consists of 2¢(M+! elements, while Q(n) U {5,7, 13, ¢} consists of w(n) + 3 elements.
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TABLE 2. Minimal #(a) for |[Conjecture 1.4
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The discrepancy between the growth of {2d+1 : d | 2n} and w(n) holds for any n, not just
those satisfying the assumptions of [Conjecture 1.4, However, computations suggest that
there is no bound on w(n) among integers with ¢(n) < 3 when no further assumptions
are placed on n. The assumptions of [Conjecture 1.4] imply that any counterexample
would need to be divisible by essentially all Toda primes of its divisors, which provides
an upper bound on the size of n for a given w(n) and hence a lower bound on the density
of primes in the relevant interval.

Roughly, a non-optimal bound for such n with w(n) = m + 1 is given by setting n =

3p1 - Pm, With p; € {5,7,13} and p;11 = 12p; ---p; + 1 for each 1 < i < m. One can
. y - m2—m

then calculate p;y1 = 12'p; + Z;;B 127, and hence n = 3-127 2 p7 + o(p*™'). The

density of primes less than 4n + 1 is bounded below by log(4n + 1)~!, which (ignoring

lower order terms) is about

m2 —m+ 2
2

Now, it should be noted that the author is not an analyst, so the above may be rife with
error. But it appears that the growth of the number of candidate Toda primes, i.e. the
set {2d + 1 : d | 2n}, outstrips the growth of Q(n) and the dropping density of primes
less than the largest Toda candidate, and so we expect [Equation (4.1)| to be non-empty.

log(12) + mlog(pl)) : :

To conclude this section, we present some computational evidence for [Conjecture 1.4]in
Among the set of n satisfying the criteria of [Conjecture 1.4] we calculate the
minimal ¢(n) for a given w(n). To introduce notation, let

T(n) = min{t(a) : w(a) = n and a satisfies the assumptions of [Conjecture 1.4}

Since t(ap) > t(a) for any prime p & T'(a) (Corollary 2.4)), we may restrict our attention

to n such that every prime factor p | n is a Toda prime of some divisor of n. Some rough

code for this computation can be found in [Appendix A}

Remark 4.1. In the range we have computed, we have Y(n) = a(n+4) — 1, where a(n)
is given by |OEIS, A118096|. However, this coincidence should not continue, as A118096
has terms satisfying a(n+ 1) < a(n) — 1, whereas we expect T(n+1) > T(n) — 1 for all
n in light of [Corollary 2.4]


https://oeis.org/A118096

TODA PRIMES 7

5. SOME OBSERVATIONS

It took a fair amount of floundering to come up with the induction argument used in
Lemma 3.2, Along the way, we noticed a few things that seem worth mentioning.

5.1. Bernoulli denominators. There is a close connection between Bernoulli denomi-
nators and Toda primes. We will introduce this relationship by characterizing the Toda
primes of primes greater than 5.

Proposition 5.1. Assume p > 7 is a prime. Let ¢ denote the totient function. If
o(x) = 4p for some integer x, then T(p) = {3,5,2p + 1} or {3,5,4p + 1}. Otherwise,
T(p) = {3,5}.

Proof. One can directly check that 3,5 € T(p) for all primes greater than 5. Now
by Euler’s product formula, we have ¢(x) = p$* '(py — 1)---ptm~(p, — 1), where
x = ]2, p{" is the prime factorization of z. It follows that there exists x such that
() = 4p if and only if one of the following cases holds:

(i) z = 2% - q, where ¢ is an odd prime such that ¢ — 1 = 2p. In this case, ¢ is a Toda
prime of p with ;Tpl =2

(ii) x =2"-3-¢q, where r € {0,1} and ¢ is an odd prime such that ¢ — 1 = 2p. In this

case, ¢ is a Toda prime of p with ;‘:—pl =

(iii) x = 2" - ¢, where r € {0,1} and ¢ is an odd prime such that ¢ — 1 = 4p. In this
case, q is a Toda prime of p with ;_—pl =1.

(iv) @ = 27 - 5%, where r € {0,1} (in which case p = 5). This case is not relevant for
this lemma, as we have assumed p > 7.

It remains to show that no other primes can be the Toda prime of p. To this end, let
q > 5 be a Toda prime of p. Then ¢ — 1 | 4p, so we either have ¢ — 1 =4p or g —1=2p
(as ¢—1is even and p is odd). The existence of such a ¢ gives us a solution to p(z) = 4p
as outlined in cases (i), (ii), and (iii).

To conclude, we need to show that we cannot have two odd primes ¢, ¢y such that
g1 —1=2pand ¢go — 1 = 4p. In other words, we need to show that there is no prime
p > 7 such that both 2p + 1 and 4p + 1 are prime. It in fact suffices to assume p > 3
here: under this assumption, p Z 0 mod 3, which implies that either 2p+ 1 or 4p + 1 is
divisible by 3. In particular, at most two of p,2p+1,4p+1 can be prime when p > 3. [

Remark 5.2. The sequence of primes (greater than 5) with ¢(p) = 2 and t(p) = 3 can
be found at |OEIS, A043297 and A087634|, respectively. In particular, for all primes
other than 5, we have #(p) = 2 if and only if the denominator of the Bernoulli number
By, is 30, which we now prove.

Proposition 5.3. Let Dy, denote the denominator of the Bernoulli number Bs,. For
all primes other than 5, we have t(p) = 2 if and only if Dy, = 30.


https://oeis.org/A043297
https:\oeis.org/A087634
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Proof. We can check the claim directly for p = 2 and p = 3, so we may assume p > 5.
To begin, assume t(p) = 2. Since p > 5, we have T'(p) = {3,5} by |Proposition 5.1, By
the von Staudt-Clausen theorem, Dy, is the product of all primes ¢ such that ¢ —1 | 4p.
Clearly g = 2, 3,5 all satisfy this condition, so 30 | Dy,. The only other candidates for ¢
are ¢ =2p+1 and ¢ = 4p+ 1. But ged(2p+1,2) = ged(4dp+ 1,1) = 1, so either of these
options would be a Toda prime of p if they were prime. Since 2p + 1,4p+ 1 &€ T'(p), it
follows that 2p + 1 and 4p + 1 are not prime, and thus Dy, = 30.

Now assume that Dy, = 30. Then the only primes ¢ such that (¢ — 1) | 4p are 2, 3, and
5, so t(p) < 2. It follows that t(p) = 2, as desired. O

Other results analogous to [Proposition 5.3 are more or less straightforward to prove on
a case-by-case basis. For example:

Proposition 5.4. The following statements are true:
(i) If Dyoy, = 2730, then T'(3m) = {5,7,13}.
(i) If Dagm = 330, then T(5m) = {3,11}.
(i#i) If Deom = 56786730, then T(15m) = {7,11,13,31,61}.

We have omitted the proof of [Proposition 5.4] for the sake of brevity. The strategy is to
show that if p is an odd prime factor of the Bernoulli denominator but not a Toda prime
of n, then there are additional shifted primes dividing 4n. This leads us to the following
conjecture.

Notation 5.5. Given an even integer 2m, let P(2m) denote the set of primes such that
p—1]2m, so that Dy = [ [ c pam) - Let F(d) = min{2m > 0: Dy, = d} [PW23].
Conjecture 5.6. Let d be a Bernoulli denominator.

(i) If F(d) = 4a for some integer a, then T'(am) = T(a) whenever Dygy = Dyq.

(1) If Dyam # Do = d, then t(am) > t(a).

The inequality in [Conjecture 5.6 (i), if true, is tight. For example, T'(55) = {3,23} (so
t(55) = t(5)), while Dayg = 7590 # 330 = Dyy. Note that our proof of [Corollary 3.3
conditionally proves [Conjecture 5.6/ for a = 3. Proving [Conjecture 5.6| for a = 3 and
a = 5 would resolve [Conjecture 1.3]

5.2. Germane primes and two wavefronts. [Proposition 5.3[and |Proposition 5.4| are
special cases of [Conjecture 5.6| . It is clear that the same procedure should yield a
proof of [Conjecture 5.6/ (il) for any chosen Bernoulli denominator, but it is unclear how
to bootstrap the proof to the general case. Our best guess is as follows. One would need
to show that if p | m for p € T'(a) — {3,5}, then there exists an odd prime ¢ & T'(a)
such that ¢ — 1 | 4am. To prove [Proposition 5.4} one can show that there exists an odd
prime g & T'(a) U {3,5} such that ¢ — 1 | 4pa. It therefore suffices to show that at least
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one element of {2pi + 1 : ¢ | 2a} is prime. We summarize this approach in the following
lemma.

Lemma 5.7. Let d be a Bernoulli denominator with F(d) = 4a for some integer a. If
{2pi +1 :4 | 2a} contains a prime number for each p € T(a), then |Conjecture 5.6
holds for this Bernoulli denominator.

Proof. We know that p — 1 | 4a with gcd(ﬁ,p) =1forall p € T(a). Thus p—1 | 4am,
4am
p—1’
p | m for some p € T'(a), then Dygp > Dyg,.

and we have ged( p) = 1 if and only if p { m. It therefore suffices to show that if

Suppose p | m. If p € T'(a), then p 1 a, and hence any prime of the form ¢ = 2pi+1 (with
i | 2a) cannot satisfy ¢ — 1 | 4a. In particular, ¢ € T'(a). So if {2pi + 1 :4 | 2a} contains
a prime number ¢, then ¢ — 1 | 4am and ¢ — 1t 4a. Thus Dygpy > Dy,, as desired. O

A naive guess is that {2pi + 1 : 4 | 2a} contains a prime of the form p(q — 1) + 1, where
q € Q(d). This led us to plot the first 1000 odd primes against the proportion of primes
among {p(¢ — 1) + 1}, where ¢ ranges among the first 10000 odd primes (see [Figure 2)).
There appear to be two families or wavefronts of primes in this plot, which we cannot
explain. In this range, the Sophie Germain primes all belong to the lower wavefront.

Definition 5.8. A prime is called germane if it is of the form p(q — 1) + 1, where p and
q are both prime. We will call p and ¢ the width and length, respectively, of p(¢—1) + 1.
For example, every Sophie Germain prime is the width of a length 3 germane prime,
while 3 is the only germane prime of length 2. We will also say that a germane prime of
width p is germane to p.

Question 5.9. Given an odd prime p, let r,(n) denote the ratio of width p germane
primes among {p(q — 1) + 1}, where ¢ ranges among the first n odd primes. Does the
double wavefront pattern in persist in the limit

lim {(p,r,(n)) : p prime}?
n—oo

Is there a qualitative description (beyond the frequency of primes germane to p) of the
primes falling into each of these two families?

Question 5.10. In we plot all germane primes of width p (horizontal axis)
and length ¢ (vertical axis), where p and ¢ range among the first 1000 primes. There
are vertical lines indicating primes that are the width of very few germane primes, and
horizontal lines indicating primes that are rarely the length of a germane prime. Can
any of these lines be explained?

Question 5.11. Given a prime r, let w(r) = #{p prime : r germane to p}. Given an
integer n > 0, what is the density of the level set

{r prime : w(r) =n}?
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It appears that the drop-off of these densities is quite stark, with primes satisfying
w(r) = 6 apparently only occurring every 80000 primes or so.

APPENDIX A. CODE

Here is a basic Sage program for computing 7'(n) and ¢(n), along with computations of
t(n) for w(n) = 3 and w(n) = 4 when n is divisible by 3p for p € {5,7,13}.
# Computing the set of Toda primes
def T(n):
s = [1;
for i in divisors (2*n):
d = 2x%i;
if is_prime(d+1) and gcd(d+1,4*n/d) == 1:
S.append (d+1);
return(S)

# omega(n) = 3 case
print (’p’,’q’,’t(3pq) ?)
for p in [5,7,13]:
for q in T(3%*p):
print (p,q,len(T(3*p*xq)))

# omega(n) = 4 case
# p,q in {5,7,13}, r in T(3pq)
print(’p’,’q’,’r’,’t(3pqr)’)
for Q in Combinations ([5,7,13],2):
for r in T(3*prod(Q)):
n = 3*xprod(Q)x*r;
print (Q[0],Q[1],r,len(T(n)))

# p in {5,7,13}, q,r in T(3p)
print(’p’,’q’,’r’,’t(3pqr)’)
for p in [5,7,13]:
for Q in Combinations (T (3*p),2):
n = 3*px*xprod(Q);
print (p,Q[0],Q[1],1len(T(n)))

# p in {5,7,13}, q in T(3p), r in T(3pq)
print(’p’,’q’,’r’,’t(Spqr)’)
for p in [5,7,13]:
for q in T(3*p):
for r in T(3*px*q):
n = 3*p*q*r;
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print(p,q,r,len(T(n)))

Here is code for calculating the minimal ¢(n) over all n satisfying the assumptions of
|Conjecture 1.4] and with a given w(n). We used ChatGPT-5.1 to define the recursive
functions select_toda_primes and select_recursive, so these could certainly be im-
proved.

The search space of n grows very rapidly as w(n) increases. It took our machine about
10 hours to calculate minimal(8). One could significantly cull the search space for
minimal (omega) by taking those n among the search space for minimal (omega-k) sat-
isfying 1en(T(n)) < minimal (omega-k)+k and then selecting k£ more prime factors from
among the relevant sets of Toda primes, since each additional prime factor can decrease
t(n) by at most 1.

# Computing the set of Toda primes

def T(n):
S = [1;
for i in divisors (2#*n):
d = 2x%i;

I
'_\

if is_prime(d+1) and gcd(d+1,4*n/d) =
S.append (d+1);
return(S)

def select_toda_primes(m,n):
results = []
select_recursive(m, n, [], results)
return(results)

def select_recursive(m_needed,current_n,collected,\

results):
# If done, record the result
if m_needed == O:

results.append(collected.copy())
return

current_T = T(current_n)

# Take k primes from T(current_n)
for k in range(l,min(len(current_T), m_needed)+1):

# Choose all combinations of size k
for combo in Combinations (current_T, k):

new_collected = collected + list (combo)
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# Multiply n by product of chosen primes
prod = 1
for p in combo:
prod *= p
next_n = current_n * prod

# Recurse for remaining primes
select_recursive(m_needed-k, next_n,\
new_collected, results)

# Check if 1list of primes satisfies criteria

# of conjecture

def satisfies_criteria(n,p):
basic_primes = list(set([5,7,13])-set([p]l))
todas = list(set(T(3*p))-set([5,7,13]1))
if all([n % q !'= 0 for q in basic_primes])\
and any([n % gq != 0 for q in todas]):

return(True)

else: return(False)

# Calculate min t(n)
def minimal (omega):
min = 10710
for p in [5,7,13]:
for primes in select_toda_primes(omega-2,3%p):
n = 3*xp*prod(primes)
if satisfies_criteria(n,p)\
and len(T(n)) < min:
min = len(T(n))
return (min)
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