Instructions: Complete 5 of the following 8 problems. Indicate which 5 problems are to be graded by circling their numbers below.

 $1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8$

Problem 1. Let A be a commutative ring and M a finitely-generated A-module. For $m \in M$, let $Ann(m) = \{a \in A : am = 0\}$.

- (a) Prove that for each $m \in M$, Ann(m) is an ideal of A.
- (b) Let $P = \{Ann(m) : m \in M, m \neq 0\}$. Prove that a maximal element of P is a prime ideal. (An element Ann(m) is maximal if $Ann(m) \subseteq Ann(n)$ implies that Ann(m) = Ann(n).)

Problem 2. Let G be a finite group with $x, y \in G$ two elements of order 2. Prove that $\langle x, y \rangle$ is either abelian or isomorphic to a dihedral group.

Problem 3. Let $\alpha, \beta \in \mathbb{C}$ with $\beta \notin \mathbb{Q}$ satisfy $\beta \in \mathbb{Q}(\alpha)$. Prove that $\mathbb{Q}(\alpha)$ is an algebraic extension of $\mathbb{Q}(\beta)$.

Problem 4. Prove or disprove the following statements.

- (a) Every UFD is also a PID.
- (b) Let R be a UFD. Let $P \subset R$ be a prime ideal with $0 \neq P$ and such that there is no prime ideal strictly between 0 and P. Then P is a principal ideal.

Problem 5. Let V be a finite-dimensional vector space. Show that if a linear operator $T: V \to V$ is nilpotent, then $T^{\dim V} = 0$.

Problem 6. Find $[K : \mathbb{Q}]$, where K is the splitting field of $x^6 - 4x^3 + 1 \in \mathbb{Q}[x]$.

Problem 7. Let $f(x) = x^3 - 3x - 1$.

- (a) Show that f(x) is irreducible in $\mathbb{Z}[x]$.
- (b) Compute the Galois group of the splitting field of f(x) over \mathbb{Q} .
- (c) Compute the Galois group of the splitting field of f(x) over \mathbb{C} .

Problem 8. Show that there is no simple group of order 616.