Problem 1. Find the Galois group of the splitting field for $f(x) = x^3 - 7$ over $K = \mathbb{Q}(\sqrt{-3})$.

Problem 2. Let ζ be a primitive 37th root of unity, and let $\eta = \zeta + \zeta^{10} + \zeta^{26}$. Determine the Galois group of $\mathbb{Q}(\eta)$ over \mathbb{Q} .

Problem 3. Let $f(x) = x^6 + x^3 + 1 = (x^9 - 1)/(x^3 - 1)$.

- (a) Prove that f(x) is irreducible over \mathbb{Q} .
- (b) Find the factorization of f(x) over \mathbb{F}_{19} .

Problem 4. Let K be the splitting field over \mathbb{Q} of an irreducible polynomial of degree 3. What are the possibilities for $[K : \mathbb{Q}]$? Give an example to show that each possibility does occur.

Problem 5. Let f(x) be a polynomial of degree *n* that is irreducible over \mathbb{Q} .

- (a) If n is prime, prove that the Galois group of f(x) over \mathbb{Q} contains an n cycle.
- (b) If n is not prime, show that the Galois group of f(x) over \mathbb{Q} need not contain an n cycle. (Hint: consider the cyclotomic polynomial $\Phi_8(x)$).

Problem 6. Give an example of two field extensions F/\mathbb{Q} and K/\mathbb{Q} with $[F : \mathbb{Q}] = [K : \mathbb{Q}] = 6$ such that $\operatorname{Gal}(F/\mathbb{Q})$ is abelian and $\operatorname{Gal}(K/\mathbb{Q})$ is non-abelian.

Problem 7. Show that for any field F and any integer $d \ge 1$, there exists at most one finite multiplicative subgroup $G \subseteq F^{\times}$ of order d.

Problem 8. Let $F = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. List all intermediate fields $\mathbb{Q} \subset K \subset F$, and find all elements $\alpha \in F$ such that $F = \mathbb{Q}(\alpha)$.

Problem 9. Let p be a prime and $q = p^n$ for some positive integer n. Show that the map $x \mapsto x^p$ is an automorphism of \mathbb{F}_q . Determine all automorphisms of \mathbb{F}_q .

Problem 10. Let K/F be a Galois extension with $Gal(K/F) \cong S_3$. Is it true that K is the splitting field of an irreducible cubic polynomial over F?

Problem 11. Consider the polynomial $f(x) = \frac{x^{23} - 1}{x - 1} = \sum_{i=0}^{22} x^i$. Determine the number of irreducible factors of f(x) over \mathbb{Q} , \mathbb{F}_2 , and \mathbb{F}_{2048} .

Problem 12. Find the Galois group of the splitting field of $f(x) = x^3 - x + 1$ over each of the following fields:

- (a) \mathbb{F}_2
- (b) R
- (c) \mathbb{Q}

Problem 13. Find a factorization of $f(x) = 6x^4 - 4x^3 + 24x^2 - 4x - 8$ into prime elements in $\mathbb{Z}[x]$.

Problem 14. Show that $x^3 - 3x - 1$ is an irreducible element of $\mathbb{Z}[x]$. Compute the Galois group of the splitting field of f(x) over \mathbb{Q} and over \mathbb{R} .

Problem 15. Compute the Galois group of $x^4 - x^2 - 6$ over \mathbb{Q} .

Problem 16. Let $F \subseteq E$ be an algebraic field extension. Show that $F \subseteq E$ is primitive if and only if the set of intermediate fields $F \subseteq L \subseteq E$ is finite.

Problem 17. Prove that $f(x) = x^4 + 1$ is reducible modulo every prime p but is irreducible in $\mathbb{Q}[x]$.

Problem 18. Using the fact that there are infinitely many primes congruent to 1 modulo m for all $m \in \mathbb{N}$, prove that every finite abelian group appears as the Galois group of some finite Galois extension of \mathbb{Q} .

Problem 19. Let K be a finite extension of a field F, and let P be a monic irreducible polynomial in K[x]. Prove that there is a non-zero $Q \in K[x]$ such that $PQ \in F[x]$.

Problem 20. Is there an injective field homomorphism from $\mathbb{F}_4 \to \mathbb{F}_{16}$? Is there an injective field homomorphism from $\mathbb{F}_9 \to \mathbb{F}_{27}$? Justify your answer.