
LECTURE 1: INTRODUCTION AND KEPLER’S LAWS

STEPHEN MCKEAN

By the very nature of scientific inquiry, any subject that is carefully studied will in-
evitably branch and splinter into disparate subfields. This phenomenon has become
quite pronounced in the mathematics of the 20th and 21st centuries. It is therefore
miraculous, or perhaps a signature of truth, that common threads can emerge to inter-
weave and bind together topics that had long since diverged. The goal of these notes
is to follow one such thread: topological modular forms. The story and trajectory of
topological modular forms will lead us back and forth between physics, operator theory,
number theory, algebraic geometry, and homotopy theory.

To set the stage, we will give a brief outline of the topics to be covered. The general
narrative of this outline is inspired by Hopkins’s 1994 ICM address [Hop95]. This outline
will gloss over a lot of the technical details, so don’t worry if this doesn’t all make sense.
We will spend a lot more time on the details in the coming weeks. Today, we just want
to get excited about the direction we’re headed.

1. A concise history of tmf

1.1. Genera. Manifolds are fundamental mathematical objects. As is often the case
with fundamental objects, you usually want to use an equivalence relation to simplify
the study of manifolds. Whenever you’re trying to understand equivalence classes, you
want to look at invariants of the equivalence relation. Cobordism invariants are called
genera:

Definition 1.1. Let R be a commutative ring. A genus is a function Φ : Mfd → R such
that

(i) Φ(M1) = Φ(M2) if there exists W ∈ Mfd with ∂W = M1 ⊔M2,

(ii) Φ(M1 ⊔M2) = Φ(M1) + Φ(M2),

(iii) Φ(M1 ×M2) = Φ(M1)Φ(M2), and

(iv) Φ(∂M) = 0.

The two types of cobordism that we understand best are:

• MU∗, the ring of cobordism classes of stably almost complex manifolds, and

• MSO∗, the ring of cobordism classes of oriented manifolds.
1
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We know the ring structure of MU∗ and MSO∗ [Tho54; Mil60; Nov60; Wal60]. The
torsion-free parts of these rings admit very clean descriptions:

MU∗ ⊗Q ∼= Q[CP1,CP2, . . .],(1.1)

MSO∗ ⊗Q ∼= Q[CP2,CP4, . . .].

This implies that if R is torsion-free, then Φ : MU∗ → R is determined by the values
it takes on CPn for all n. Moreover, if Φ(CP2n) = 0 for all n, then Φ factors through
MSO∗.

With what we’ve seen so far, we could try to cook up a genus by prescribing its values
on CPn. A better way to collect this sort of data is with a generating function. There
are two important types of generating functions of genera:

logΦ(z) =
∑
n≥0

Φ(CPn)
zn+1

n+ 1
,(logarithm)

KΦ(z) =
z

expΦ(z)
,(characteristic series)

where expΦ(z) = log−1
Φ (z).

Remark 1.2. If R is torsion-free, note that expΦ(z) is an odd function if and only if
Φ(CP2n+1) = 0 for all n. In particular, Φ factors through MSO∗ if and only if KΦ(z) is
an even function.

Example 1.3. Here are some examples of genera:

• The Todd genus, given by Φ(CPn) = 1 for all n.

• The Â genus, which has characteristic series K(z) = z
ez/2−e−z/2 . This genus is an

invariant of oriented manifolds. (Can you see why?)

• The elliptic genus [Och87], which has logarithm

logΦ(z) =

∫ z

0

1√
1− 2δt2 + εt4

dt.

Here, δ and ε are parameters. When δ2 ̸= ε and ε ̸= 0, logΦ(z) is an elliptic
function.1 We’ll talk about these next time.

• The Witten genus [Wit87; Wit88], which has characteristic series

K(z) =
z

ez/2 − e−z/2

∏
n≥1

(1− qn)2

(1− qnez)(1− qne−z)
.

Note that the Witten genus takes values in Q[[q]]. Setting q = 0 recovers the Â
genus.

On certain classes of manifolds, the Witten genus takes values in Z[[q]], along with
some other nice properties that make the Witten genus a modular form.

1When δ2 = ε or ε = 0, can you see why you might the term logarithm is appropriate?
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Exercise 1.4. Compute the logarithm and characteristic series of the Todd genus. Com-
pute the Â genus of CP2n. If you are feeling very ambitious, try computing the charac-
teristic series of the elliptic genus, the logarithm of the Witten genus, or the elliptic and
Witten genera of CPn.

Exercise 1.5. When δ = ε = 1, the elliptic genus recovers the signature of a manifold
(we’ll talk about this next week). It turns out that for a particular choice of δ and ε,

the elliptic genus also recovers that Â genus. Find these values of δ and ε.

Remark 1.6. Why does anyone care about genera? Well, assuming that you have a
way to compute Φ(M) for a given manifold, you can use a genus to measure whether M
and N are cobordant. Note that the Todd genus cannot distinguish between projective
spaces, while the Â genus can distinguish between some projective spaces.

A general mathematical philosophy is that a good invariant is the shadow of some richer
structure. Ochanine’s definition of the elliptic genus was guided by some ideas in physics.2

Witten took this physical inspiration even further in defining the Witten genus. This
was a very exciting development in the mathematical community — ideas from physics
led to new invariants of manifolds. Are these new genera the shadows of some richer
geometric theory? Topological modular forms are part of the answer to this question,
and part of a new question that arises.

1.2. From genera to cohomology. I’ve claimed that genera are interesting invariants,
and that interesting invariants should be artifacts of rich theories. So let’s see what sort
of theory comes out of genera. Our angle of attack is to work in families. This is very
similar to the relative philosophy that revolutionized algebraic geometry in the mid-
1900s: algebraic varieties over a field are interesting, but schemes over some base are
even more powerful. Looking fiber-by-fiber over the base, a scheme is a family of varieties
parameterized by the base.

Recall that MU∗ and MSO∗ are rings (whose elements are complex cobordism classes
and oriented cobordism classes, respectively). We saw nice formulas for these rings after
removing their torsion (Equation 1.1). In fact, more is true. Any form of cobordism
determines a generalized homology theory and a generalized cohomology theory. Such
theories satisfy the familiar axioms of (co)homology (like homotopy invariance, exactness
along inclusions, excision, and additivity over disjoint unions). However, the dimension
axiom need not hold for generalized (co)homology theories: you can get non-trivial values
in negative degrees, and (co)homology of a point need not be just the ring of coefficients.
Indeed,

MU∗ = MU∗(pt),

MSO∗ = MSO∗(pt),

and we have seen that just the torsion-free parts of these rings are already loaded with
stuff. Another familiar type of generalized cohomology theory is K-theory. The study of

2The elliptic genus is a partition function of a type of superstring. I don’t know what any of that
means, but maybe we’ll learn about it in Dan Freed’s quantum theory class.
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these things will lead us to the world of spectra3, which we’ll talk about more officially
later in the course.

For now, here’s a rough approximation of what the cohomology theory of a cobordism
theory means. Let Ω denote a cobordism theory (so MU, or MSO, or something fancier
if you’ve seen this before). Take a base space S. Over each point s ∈ S, associate an
n-manifold Ms, with the requirement that Ms and Ms′ are Ω-cobordant for all s, s

′ ∈ S.
So as you follow a path in S, the fibers Ms trace out a cobordism from Ms0 to Ms1 . This
family is an element of the cohomology group Ω−n(S). So Ω−n(S) tells you something
about families (over S) of Ω-cobordant manifolds.

Question 1.7. What we just did was a little hand-wavy, but can you see how to turn
the set Ω−n(S) into a group? What about ring structure? And what should Ω∗(S) mean
in positive degrees?

We’ll make this whole story rigorous in the coming weeks. For now, the key is to think
of cobordism as a generalized cohomology theory Ω : Mfd → Groups. If we keep track of
the grading coming from dimension, we might even get Ω : Mfd → GradedRings. This
suggests how we should define genera in families:

Definition 1.8. Let Ω be the generalized cohomology theory associated to a cobordism
theory. Let E be another generalized cohomology theory. An E-valued genus is a
multiplicative map

Ω → E

of generalized cohomology theories.

Remark 1.9. This will all be a lot more convenient to say in terms of spectra. I’ll talk
more about spectra next week, and then probably again halfway through the semester.

Example 1.10. In Example 1.3, we saw various examples of genera. What do these
look like in families? In other words, what is the generalized cohomology theory E and
the map Ω → E such that Ω(pt) → E(pt) recovers the functions in Example 1.3?

• The Todd genus can be promoted to MU → HQ, or better yet to MU → KU.

• When restricted to spin manifolds, the Â genus can be promoted to MSpin → KO.
This was proved by Atiyah–Singer [AS63], which we’ll learn about later in the
semester.

• The elliptic genus can be promoted to MSO → Ell, where

Ell∗(−) = MSO∗(−)⊗MSO∗(pt) Z[16 , δ, ε,∆,∆−1]/(64ε(δ − ε2)2 −∆).

Here, ∆ is the modular discriminant. Ell is known as elliptic cohomology, and
we’ll learn more about it later in the semester. For now, it suffices to point out

3Many words are overloaded in math, but few suffer from this problem so much as spectra. This
overloading will be especially pronounced in this course, since we will be talking about homotopy theory,
algebraic geometry, and operator theory.
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that we have some bizarre formula, but we still do not know how to describe Ell
geometrically! This is in contrast with most generalized cohomology theories (like
ordinary cohomology, K-theory, cobordism), where we have a good geometric
story to tell. The Stolz–Teichner conjecture says that the geometric nature of
elliptic cohomology should come from quantum field theory.

• Promoting the Witten genus is where our story really kicks in. The natural
domain of the family-level Witten genus is MString, but it was unknown what
cohomology theoryX should fit into theWitten genus MString → X. Topological
modular forms are the answer to that question:

MString → tmf.

Remark 1.11. The Witten genus is often called the universal elliptic genus — you
can recover any elliptic genus (coming from some choice of δ and ε) by choosing an
appropriate value of q. Similarly, topological modular forms are the universal elliptic
cohomology theory. Justifying this statement will be one of the main highlights of this
class.

Just as we don’t know how to geometrically describe elliptic cohomology, we don’t have
a geometric description for tmf. But the Stolz–Teichner conjecture again says that this
has something to do with quantum field theory.

Remark 1.12. Despite having the above list, extending a genus to families is not a
canonical process. In order to extend a genus, one needs to really understand how that
genus is defined in terms of geometry and analysis.

Some of you may wince when you hear that something is not canonical. One punchline
of this course is that there is plenty of beautiful mathematics that is not canonical.

1.3. The universal elliptic cohomology theory. To close this section, I want to
wave my hands at how tmf is defined. A formal group law over a ring R is just that —
a formally defined rule for combining pairs of elements in R. There are a few axioms
that don’t matter to us right now, but the key point is that one can turn formal group
laws into generalized cohomology theories. For example, the additive formal group law
F (x, y) = x + y yields ordinary cohomology, while the multiplicative formal group law
F (x, y) = x+ y + xy yields K-theory.

In fact, any algebraic group determines a formal group law: you take the formal power
series expansion of the product map at the identity.

Exercise 1.13. Compute the formal group laws determined by the algebraic groups
Ga := (A1,+) and Gm := (A1 − {0},×).

So any algebraic group determines a formal group law. A formal group law determined by
an elliptic curve in turn determines a cohomology theory, and such cohomology theories
are called elliptic cohomology theories. So if you want a universal elliptic cohomology
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theory, you need some way of capturing the universal behavior of elliptic curves. This
suggests that we should be working with the moduli space of elliptic curves.

It turns out that we need to take the Deligne–Mumford compactification M1,1, but
not just in ordinary schemes. We need to work in derived algebraic geometry, because
we want to capture the higher structure that comes with a cohomology theory. In
this setting, there is a structure sheaf O of M1,1, and taking global sections gives us
Tmf := Γ(M1,1,O). Now we’re almost there, but we have some extra stuff in negative
degrees that we don’t want. So we kill all the negative degrees to obtain tmf.

Setting up all this machinery and motivating where these ideas come from will be a big
part of the last portion of this class. There’s a sort of dance between the genus story
and this construction of tmf. Lifting genera to families involves a lot of non-canonical
reasoning in terms of geometry and analysis, while many definitions and constructions
in homotopy theory and derived algebraic geometry use canonicity in a crucial way.

2. Kepler’s laws of planetary motion

Alright, let’s come back down to earth, or any planet for that matter. As we just
learned, the discovery of topological modular forms was catalyzed by the introduction
of the elliptic genus and its connection to elliptic cohomology. Because the term elliptic
seems to show up everywhere, next lecture will be all about elliptic functions. I want
to close today’s lecture by explaining why elliptic functions are an inevitable piece of
scientific history.4

The stars have long inspired the human mind. While most lights in the heavens follow
a clear periodic motion, the planets wander. For millennia, the motion of the planets
was a great mystery. A revolution in physics came about with Copernicus’s theory of
heliocentrism. Copernicus posited that the planets follow circular orbits around the sun,
with the sun lying at the center.

Heliocentrism was revised by Kepler, who used Tycho Brahe’s extensive astronomical
measurements to show that while Mars does indeed orbit the sun, its orbit is not circular
and the sun does not lie at the center. Instead, Mars’s orbit is an ellipse, and the sun
lies at one of the foci. These observations led Kepler to propose three laws of planetary
motion:

Law 2.1 (Kepler).

(1) The orbit of a planet around the sun is an ellipse, with the sun at one of the foci.

(2) A line segment joining the sun and planet sweeps out equal areas during equal
intervals of time.

(3) The square of a planet’s orbital period is proportional to the cube of its orbit’s
semi-major axis.

4When learning something new, I often ask myself: was this discovered by coincidence? Or would a
different society on a different world eventually come up with the same concept?
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Question 2.2. It turns out that all of the inner planets’ orbits are almost circular, but
Mars’s orbit is the most eccentric these. Would it have been possible to recognize a less
eccentric orbit as non-circular with the tools of Kepler’s time? Would more precise tools
for astronomical measurements have been developed without a knowledge of Kepler’s
laws? How might this have changed the history of science had we appeared on Mars
instead of Earth?

Before we let this turn into an existential crisis, let’s see how Newton’s laws of motion
imply Kepler’s laws of planetary motion.

(1) Suppose we have two bodies of masses M and m. Fix our frame of reference to
the larger body, so that the smaller body is moving with velocity v at distance
r. Newton then gives us the total energy of the system as

E =
mv2

2
− GMm

r
.

Now we rewrite v in polar coordinates. The radial and tangential components of
v are orthogonal, so v2 = r′2 + r2θ′2.

The angular momentum of the smaller body is L = r × mv. Since the vectors
r and r′ are parallel, we have r × r′ = 0. On the other hand, the vectors r and
rθ′ are orthogonal, so we find that L = mr2θ′. Now write ρ = 1/r and note that

r′ = − 1
ρ2
ρ′, so that θ =

∫
Lρ2

m
dρ = −

∫
L

mr′
dρ. Substituting, we get

E =
m

2

(
r′2 + r2

(
L

mr2

)2
)

− GMm

r

=
mr′2

2
+

L2

2mr2
− GMm

r
.

Solve for r′ and use the non-obvious substitutions a = L2

GMm2 and e2 = 1 + 2Ea
GMm

to find

r′ =
L

m

(
e2

a2
−
(
1

r
− 1

a

)2
)1/2

.

Since θ = −
∫

L
mr′

dρ, we find that

θ = −
∫

1√
e2/a2 − (ρ− 1/a)2

dρ

= arccos

(
ρ− 1/a

e/a

)
.

In other words, r = a
1+e cos θ

, which is an ellipse with one focus at the origin.

(2) The infinitesimal area dA swept out by the planet is a right triangle with legs
r and dr, so we have dA = r

2
× dr. It follows that rate of area swept out is

A′ = r
2
× r′. To show that this rate of area sweeping is constant, we need to show

that A′′ = 0. By the product rule, we have A′′ = 1
2
(r′ × r′ + r × r′′). The first

term vanishes, but the second term need not vanish in general. It happens to
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vanish for planetary motion, because Newton’s laws imply that the acceleration
of the planet due to gravity is parallel to the line through the sun and planet.
Thus r × r′′ = 0, so A′′ = 0.

Exercise 2.3. Derive Kepler’s third law from Newton’s laws of motion. (Hint: the area
of an ellipse with semi-major axis a and eccentricity e is A = πa2

√
1− e2. At the end

of the day, you will find that T 2 = 4π2a3

GM
, where T is the orbital period.)

Next time: Elliptic functions. Today’s discussion on Kepler’s laws will show how
scientists were naturally led from observing the stars to thinking about elliptic functions.

Daily exercises: In each lecture, I will try to give at least a couple exercises for you to
think about. These may range from trivial to impossible. The point is to encourage you
to think about the material outside of lecture time. I’ll always put a hyperlinked list of
exercises at the end of the notes to make them easy to find.

• Exercise 1.4: a few genera computations.

• Exercise 1.5: recover the Â genus from the elliptic genus.

• Exercise 1.13: compute the formal group laws associated to Ga and Gm.

• Exercise 2.3: derive Kepler’s third law.
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url: https://ncatlab.org/nlab/files/Hopkins_TopModFormsAtICM.pdf.

[Mil60] J. Milnor. “On the cobordism ring Ω∗ and a complex analogue. I”. In: Amer.
J. Math. 82 (1960), pp. 505–521. url: https://doi.org/10.2307/2372970.

[Nov60] S. P. Novikov. “Some problems in the topology of manifolds connected with
the theory of Thom spaces”. In: Soviet Math. Dokl. (1960), pp. 717–720. url:
https://homepage.mi-ras.ru/~snovikov/2.pdf.

[Och87] Serge Ochanine. “Sur les genres multiplicatifs définis par des intégrales ellip-
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