
LECTURE 10: SOME BASIC ALGEBRAIC GEOMETRY

STEPHEN MCKEAN

We recently met the graded ring MF∗ of modular forms. Although MF∗ is a ring, its
objects are analytic objects. In my personal experience, whenever you have a ring of
analytic objects, that ring is usually infinitely generated or some other sort of nonsense.
Not so for MF∗:

Theorem 0.1. There is an isomorphism MF∗ ∼= C[G4, G6] of C-algebras.

Proof. Two good places to see a proof are [Zag08, §2.1] or [Lan95, §2]. Here’s the general
idea. The C-algebra structure on MF∗ comes from viewing each MFk as a C-vector space.
The proof now proceeds via some dimension counting and a check that G4 and G6 are
algebraically independent. □

Remark 0.2. You should now be saying, “Wait a minute, what about all the other
Eisenstein series?” Well, they satisfy a pretty crazy recurrence relation. Let dk =
(2k + 3)k!G2k+4 for k ≥ 0. Then
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)
dkdn−k

for all n ≥ 0. We won’t prove this, but you might find it to be a fun exercise.

In particular, once you know G4 and G6, the remaining Eisenstein series are given by a
polynomial in G4 and G6. The coefficients of such a polynomial are rational — are they
ever integers?

By now, you should be convinced that modular forms are at least somewhat interesting.
For example, they played a role in the example of two isospectral but non-isometric tori.
In fact, modular forms are extremely interesting, with all sorts of crazy applications in
combinatorics, number theory, and even the representation theory of the monster group.
These could be fun things to write your semester project on, but we’ll have to press on.

Despite being interesting, the ring MF∗ is extremely simple. What’s more, the two
generators G4, G6 of MF∗ played a central role when we used ℘(z,Λ) to write down the
equation of the elliptic curve C/Λ. So it seems like there should be some close connection
between elliptic curves and modular forms. Our next major story arc is to make precise
the connection between elliptic curves and MF∗, but this will take us a few lectures.
Today, we’ll just talk about elliptic curves.
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1. Crash course in algebraic geometry

Some of you have expressed some worries about algebraic geometry, so we’re going to
begin with a very quick introduction to the subject. There is a lot that I won’t be able to
say here, but hopefully this will give you enough of a bearing to navigate our discussion
on elliptic curves.

Historically (and intuitively), algebraic geometry begins with affine varieties.

Definition 1.1. Let k be a field. An affine algebraic variety is the set

{c = (c1, . . . , cn) ∈ kn : f1(c) = f2(c) = · · · = fm(c) = 0},

where f1, . . . , fn ∈ k[x1, . . . , xn]. In short, an affine variety is the solution set to a
system of polynomial equations. I will often denote the solution set of f1, . . . , fm by
V(f1, . . . , fm).

Example 1.2. What does V(ax2 + by2 − 1) look like? How does this depend on our
choice of field k?

Example 1.3. What does V(x2+y2−1, y−x) look like? What about V(x2+y2−1, y−1)?

When k = C, this is a pretty good definition. Points (a1, . . . , an) ∈ Cn are solutions to
systems of the form {x1 − a1, . . . , xn − an}, which are in bijection with maximal ideals
of the ring C[x1, . . . , xn] (this is the Nullstellensatz ). Even better, the set of solutions
inherits a topology from the topology on C, so affine varieties over C are topological
spaces.

When k = R, we still get a topology on our set of solutions, but other features of the
definition start to break down a little. For example, the solution set to x2 + 1 is empty,
but this same polynomial has two solutions over C. Even more strangely, (x2 + 1) is a
maximal ideal of R[x], so the desired bijection between points of Rn and maximal ideals
of R[x1, . . . , xn] really breaks down.

Over an arbitrary field, things are even worse. Most fields don’t have a reasonable
topology to offer, and we still get all sorts of weird maximal ideals in k[x1, . . . , xn].
You can solve both of these issues by introducing the Zariski topology. On first pass,
the Zariski topology is the topology on kn generated by sets of the form V(f1, . . . , fm),
which we define to be closed. After ruminating on this idea, you are eventually led to
the notion of an affine scheme:

Definition 1.4. Let R be a commutative ring. The spectrum of R,1 denote SpecR, is
the set of all prime ideals of R. The Zariski topology on SpecR is generated by closed
sets, which we define as sets of the form V(I) = {P ∈ SpecR : P ⊂ I}. In other words,
the points of V(I) are the prime ideals contained in I.

1We again encounter one of the most overloaded terms in math.
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Here, I is an ideal of R, which is the correct formulation of a system of polynomial
equations — indeed, if I = (f1, . . . , fm), then c ∈ kn is a common solution of f1, . . . , fm
if and only if g(c) = 0 for all g ∈ I.

Definition 1.5. An affine scheme is the spectrum of some ring, equipped with the
Zariski topology. Given an ideal I ⊂ R, the solution set V(I) is the scheme Spec(R/I).

To see that this is a good definition, let’s think back on our weird x2 + 1 example over
R. This didn’t have any points as an algebraic variety, but it does have a point as a
scheme! In particular, (x2 + 1) is a prime ideal, so this is a point of V(x2 + 1).

Example 1.6. What does V(ax2 + by2 − 1) look like? How does this depend on our
choice of field k?

Example 1.7. What does V(x2+y2−1, y−x) look like? What about V(x2+y2−1, y−1)?

Remark 1.8. When you encounter the term variety in algebraic geometry, it generally
means a scheme with several adjectives associated to it. These adjectives are meant to
rule out some of the more unusual geometric properties that schemes can have.

As geometric objects, schemes should have a good notion of smoothness and dimension.
The rough idea for smoothness is that the Jacobian matrix (∂fi/∂xj) should have full
rank on all of V(f1, . . . , fm). The notion of dimension comes from Krull dimension.

Definition 1.9. The Krull dimension of a commutative ring R is the supremum of the
lengths of proper chains of proper ideals. The Krull dimension of a scheme SpecR is
the Krull dimension of R.

Exercise 1.10. Compute the Krull dimension of k[x1, . . . , xn] and k[x, y]/(y2 − ax3 −
bx− c).

The next step in the story is to go from affine schemes to projective schemes. I won’t
describe this carefully, but will instead tell you what you should imagine at the level of
solution sets.

Let Pn
k denote projective n-space over a field k, whose points are (n+1)-tuples [c0 : · · · :

cn] such that [c0 : · · · : cn] = [λc0 : · · · : λcn] for all λ ∈ k − {0}. Given a system of
homogeneous polynomials f1, . . . , fm ∈ k[x0, . . . , xn], the projective variety V(f1, . . . , fm)
is the set of solutions in Pn

k to f1, . . . , fm. Requiring the fi to be homogeneous ensures
that this solution set is well-defined.

2. What is an elliptic curve?

Now we can talk about elliptic curves. Our first encounter with these was as the complex
tori C/Λ. As a manifold, this is smooth, compact, and has genus 1. But we can also
think about this as an abelian group, where the group operation comes from addition
in C, and the identity is the image of Λ. This leads to two plausible definitions of an
elliptic curve over C.
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Definition 2.1. An elliptic curve over C is a smooth, projective algebraic curve of genus
1.

Definition 2.2. An elliptic curve over C is an abelian variety of dimension 1.

I haven’t defined abelian varieties yet – we’ll do this more carefully next time. For now,
I’ll just mention that these two definitions coincide.

Exercise 2.3. Prove that every abelian variety of dimension 1 has genus 1.

Hint: use the group structure to show that every abelian variety has trivial tangent bun-
dle. For curves, the tangent bundle is dual to the canonical bundle. Use the adjunction
formula to compute the canonical bundle of a smooth, projective curve of genus g.

Next time: elliptic curves and period integrals.
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