
LECTURE 11: ELLIPTIC CURVES AND PERIOD INTEGRALS

STEPHEN MCKEAN

1. What is an elliptic curve?

Last time, we gave two definitions of elliptic curves over C. I’ll recall them here after
reminding you of the motivation.

Our first encounter with these was as the complex tori C/Λ. As a manifold, this is
smooth, compact, and has genus 1. But we can also think about this as an abelian
group, where the group operation comes from addition in C, and the identity is the
image of Λ. This leads to two plausible definitions of an elliptic curve over C.

Definition 1.1. An elliptic curve over C is a smooth, projective algebraic curve of genus
1.

Definition 1.2. An elliptic curve over C is an abelian variety of dimension 1.

I need to tell you what an abelian variety is. First, I have to tell you what an algebraic
group is.

Definition 1.3. An algebraic group over a field k is an algebraic variety G with a
distinguished element e ∈ G(k) and regular maps µ : G×G → G (the group operation)
and i : G → G (the inversion) that satisfy the group axioms. So for example, µ(x, i(x)) =
µ(i(x), x) = e for all x ∈ G.

Exercise 1.4. Let Gm := Spec(k[x, y]/(xy − 1)). Find µ : Gm × Gm → Gm and
i : Gm → Gm that endow Gm with the structure of an algebraic group.

Lemma 1.5. Any (geometrically reduced, locally finite type) algebraic group G over a
field k is smooth.

Proof. Recall that G → Spec k is smooth if and only if Gk → Spec k is smooth, which
holds if each k-point of Gk is smooth. If G is geometrically reduced, then Gk is reduced
and thus contains a smooth point. Now Gk(k) acts transitively on itself (by translations),
so every other point of Gk(k) must be smooth. □

The following definition is slightly different from what I said last time, and it may surprise
you at first.

Definition 1.6. An abelian variety is a proper (geometrically reduced, locally finite
type) algebraic group over a field.
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Why is this surprising? The only condition we’ve really added is properness — we said
nothing about the group law being commutative! It turns out that properness will imply
commutativity.

Lemma 1.7. The group structure on any abelian variety is commutative.

Proof. If K/k is a field extension and G is an algebraic group over k, then GK is an
algebraic group over K. (This boils down to checking that the group axioms still hold
after base changing the morphisms µ and i.) Properness is also stable under base change,
so it follows that if A is an abelian variety over k, then Ak is an abelian variety over
k. If the group law on Ak is commutative, then so is the group law on A. To save on
notation, we’ll just assume k = k.

Since A is proper (and reduced and locally finite type), any morphism A → A is finite
in an open neighborhood of any chosen point. In particular, for each x ∈ A(k), the
morphism

ϕ : A× A → A× A

(x, y) 7→ (x, xyx−1y−1)

is finite in an open neighborhood of x. Here, xyx−1y−1 = µ(µ(x, y), µ(i(x), i(y)). For
x = e, we see that ϕ(x, y) = (x, e) in this neighborhood. In particular, (x, y) 7→ xyx−1y−1

is the constant function e in a neighborhood of the identity. By translating by k-points,
we find that (x, y) 7→ xyx−1y−1 is the constant function e on all of A× A, so the group
operation on A is commutative. □

Remark 1.8. Sometimes you’ll see projective instead of proper in the definition of an
abelian variety. Projectivity is a stronger condition in general, although proper and
projective coincide for smooth curves and surfaces.

Now we can show that the two definitions of elliptic curves over C coincide.

Exercise 1.9. Prove that every abelian variety of dimension 1 has genus 1.

Hint: use the group structure to show that every abelian variety has trivial tangent bun-
dle. For curves, the tangent bundle is dual to the canonical bundle. Use the adjunction
formula to compute the canonical bundle of a smooth, projective curve of genus g.

Lemma 1.10. A smooth, projective curve of genus 1 is an abelian variety.

Proof. Let E be a smooth, projecitve curve of genus 1. Recall that a divisor on a curve
is a formal sum

D =
∑
P∈E

nP [P ],
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where P ranges over the closed points of E and nP ∈ Z are zero for all but finitely many
P . The set of divisors of E, together with formal addition of divisors, forms the Picard
group Pic(E). The degree of a divisor gives us a homomorphism (of abelian groups)

deg : Pic(E) → Z∑
P∈E

nP [P ] 7→
∑
P∈E

nP · [k(P ) : k].

Here, k(P ) is the residue field of P , which is a finite extension of k (since P is a closed
point).

A principal divisor is a divisor of the form

div(f) =
∑
P∈E

ordP (f)[P ],

where f is some rational function on E and ordP (f) is the order of vanishing of f at P .
Every principal divisor on a projective curve has degree 0: this is the sum of orders of
zeros minus the sum of orders of poles. You can cleverly set up some contour integrals
to check that the roots and poles must cancel each other out.

Now we come to a special group, Pic0(E) := {degree 0 divisors}/{principal divisors}.
This definition works for any curve, and there’s a better definition for more general
varieties. For curves, the choice of a k-rational point O ∈ E(k) gives us a map

J : E → Pic0(E)

P 7→ [P ]− degP [O] + {principal divisors}.
To see that this map is injective, we need to see that [P ]−degP [O] is not principal unless
P = O. If this divisor were principal, then [P ] and [O] would be linearly equivalent,
which means that there would be a rational curve (i.e. a P1) through both P and O.
But smooth, proper curves of genus at least 1 do not contain any copies of P1 (see
Exercise 1.11).

So once we see that J is surjective, the abelian group structure on Pic0(E) will determine
an abelian group structure on E. The key here is Riemann–Roch. I’ll go quickly at this
point, since defining everything carefully will take us down too many rabbit holes.

Given D ∈ Pic0(E), Riemann–Roch for elliptic curves implies h0(D + [O]) = 1. Thus
if f ∈ H0(E,D + [O]) is not constant, there must be some [P ] such that div(f) =
[P ] − [O] − D. Now degD = deg(div(f)) = 0, we find that deg[P ] = deg[O] = 1, so
[P ]− [O] ∼ D. □

Exercise 1.11. Prove that if X is a smooth, proper curve of genus g ≥ 1, then there is
no non-trivial rational map P1 → X.

We can also derive the group law geometrically using the motto, “Three colinear points
sum to 0.” More concretely, given A,B ∈ E, we draw the line through A and B, calculate
the third point of intersection C ∈ E (which we have by Bézout’s theorem), and then
we reflect across y = 0.
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Exercise 1.12. Derive the geometric description of the group law from the group law
on Pic0(E).

Exercise 1.13. Given an elliptic curve E = V(y2 − x3 − ax − b), write code that
implements the geometric description of the group law on E. You’ll need to calculate
the line through two points, find the third intersection point, and reflect y 7→ −y.

1.1. Elliptic curves over other fields.

Remark 1.14. We defined elliptic curves over other fields as well. Do the two definitions
coincide in these cases? Well, abelian varieties always come equipped with a k-rational
point (that plays the role of the base point), whereas genus 1 curves need not have any
k-rational points at all. So in general, we need to include the data of a k-rational point
in our definition of an elliptic curve.

Exercise 1.15. Show that a smooth, proper curve E over a field k with a k-rational
point is an abelian variety if and only if E has genus 1.

Remark 1.16. Given an algebraic group G over a field k, we get a group structure on
G(k). In particular, the k-rational points of an elliptic curve form an abelian group. If
k = C, then E(C) will not be a finitely generated abelian group, since E(C) will be
uncountable.1 Mordell’s theorem tells us that E(Q) is always finitely generated.

So when k = Q, we get two new invariants of an elliptic curve: the rank and torsion of
E(Q). We know a lot about the torsion, thanks to Barry Mazur:

Theorem 1.17 (Mazur). The torsion subgroup of E(Q) is Z/nZ for 1 ≤ n ≤ 10 or
n = 12, or Z/2Z × Z/mZ for 1 ≤ m ≤ 4. Moreover, each of these cases is known to
occur.

The rank of E(Q) is much harder to get a handle on. The elliptic curve with largest
confirmed rank has rank 20, due to Noam Elkies and Zev Klagsbrun. There are also
examples whose rank is between 21 and 28, although it is not known exactly which
of these integers actually gives the rank. The general conjecture is that there should
be elliptic curves with arbitrarily large rank, although a fairly recent heuristic of Park–
Poonen–Voight–Matchett Wood suggests that there are only finitely many elliptic curves
of rank greater than 20. It’s safe to say that Boston is the place to be if you want to
learn about E(Q).

1A finitely generated abelian group is a finite union of countable sets, which cannot be uncountable.
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2. Recovering the lattice from an elliptic curve

Recall that we have a biholomorphism

Φ : C/Λ → V(y2z − 4x3 + g2xz
2 + g3z

3)

0 7→ [0 : 1 : 0]

z 7→ [℘(z) : ℘′(z) : 1]

for any non-degenerate lattice Λ (so g32−27g23 ̸= 0). Now suppose I hand you an equation
y2 = 4x3 − ax− b with a3 − 27b2 ̸= 0. How do I recover Λ?

Well, let E be your complex elliptic curve. Let α, β ⊂ E be closed paths giving a basis
of H1(E;Z). (Remember that E is a torus – try drawing a basis of H1.) It follows that
Φ−1 ◦ α and Φ−1 ◦ β will give a basis of H1(C/Λ;Z). We have a natural isomorphism

H1(C/Λ;Z) → Λ

γ 7→
∫
γ

dz,

so two generators of Λ can be calculated as ω1 :=
∫
Φ−1◦α dz and ω2 :=

∫
Φ−1◦β dz. All

that remains is to express these as integrals on E. The chain rule says d℘(z) = ℘′(z)dz,
so

dz =
d℘(z)

℘′(z)

= Φ∗
(
dx

y

)
.

Now we can compute

ω1 =

∫
Φ−1◦α

dz

=

∫
Φ−1◦α

Φ∗
(
dx

y

)
=

∫
α

dx

y
,

and similarly for ω2. If you want to write this as an integral involving just one variable,
we get

ω1 =

∫
α

dx√
4x3 − ax− b

.

Remark 2.1. Elliptic integrals strike again! These elliptic integrals are often called
period integrals, since they calculate the periods of ℘ (which in turn give us the generators
of Λ). Inspired by these definitions, you can define a period to be any number that you
obtain by integrating a differential form over an algebraic variety.

It turns out that essentially every number we know about is a period. Just like algebraic
numbers are more complicated than rational numbers but are still accessible to the
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human mind, so too are periods more complicated than algebraic numbers but still
familiar to us.

If you want to learn more about periods, go read the amazing notes of Kontsevich
and Zagier [KZ01]. There you will learn that every algebraic number is a period, that
periods form a ring that is conjectured (but not known) to not be a field, and that
the only examples of known non-periods are bizarre (e.g. [Yos08]). Some well-known
numbers like e and

γ =

∫ ∞

1

(
−1

x
+

1

⌊x⌋

)
dx

are conjecturally non-periods. It is a straightforward exercise to show that the ring of
periods is a countable set (once you have a definition given), and yet this countable set
accounts for basically any complex number you can think of.

Exercise 2.2. If I were mean, I might hand you an equation of the form y2 = x3+ax+b.
This should still define an elliptic curve, but I’ve changed the variables to obfuscate the
connection to ℘. Your exercise is to undo my meanness.

Compute the lattice associated to the elliptic curve defined by the vanishing of y2 =
x3 + ax+ b. It’s okay if you leave your answer in terms of elliptic integrals.

Exercise 2.3. If you actually want to get numbers for ω1 and ω2, you better have
equations for the paths α and β. Find such equations for the elliptic curve defined by
y2 = x3 + ax+ b.

Next time: moduli of elliptic curves.
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