
LECTURE 13: MODULI STACK OF ELLIPTIC CURVES

STEPHEN MCKEAN

We’re at the midway point of the semester, so the pace is going to pick up a bit. Please
don’t hesitate to reach out for help if you find the class is moving too quickly for you.

1. Modular forms from SL2(Z)\H

Recall that SL2(Z)\H is our moduli space of elliptic curves over C. Quotients like this are
perfectly good geometric objects (called orbifolds or stacks, depending on your context),
but they might have some slightly strange behavior at singular points. This behavior
is the stabilizer of the group action. When you have a regular covering of a manifold,
the automorphism group acts with trivial stabilizers everywhere, and the quotient is
again a manifold. But with SL2(Z)\H, there are a few points with finite but non-trivial
stabilizers.

Exercise 1.1. Compute the stabilizers of i and eπi/3 in H under the action of SL2(Z).

Since SL2(Z)\H is a geometric object, we should be able to talk about vector bundles
over it. These should be the same as vector bundles on H that are compatible with the
action of SL2(Z).

The trivial line bundle L → SL2(Z)\H is defined as the quotient of C×H by the SL2(Z)
action

(z, τ) 7→ (z, aτ+b
cτ+d

).

But we could just as well consider the action

(z, τ) 7→ ((cτ + d)2kz, aτ+b
cτ+d

).

To see that this actually gives a line bundle, we would need to check the cocycle condition
(c1τ + d1)

2k(c2τ + d2)
2k = (c3τ + d3)

2k, where(
a3 b3
c3 d3

)
=

(
a1 b1
c1 d1

)(
a2 b2
c2 d2

)
.

I’ll leave this to you as an exercise, but this all works out to give us a line bundle
L2k. Sections of this line bundle are holomorphic functions on H such that f(γ · τ) =
(cτ +d)2kf(τ), so modular forms of weight 2k naturally arise as sections of a line bundle
on SL2(Z)\H. For a more thorough discussion, see Milne’s notes: https://www.jmilne.
org/math/CourseNotes/mf.html.
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2. The j-invariant

Recall that g2(Λ) and g3(Λ) are invariants of the lattice Λ, and hence of the elliptic curve
C/Λ. However, these are not invariant under homothety (and hence under isomorphism),
as we saw previously. But if we take an appropriate ratio of polynomials in g2 and g3,
we can cancel out the effect of scaling and get an invariant of lattices up to homothety
(and hence of elliptic curves up to isomorphism). This leads us to the j-invariant.

Definition 2.1. The j-invariant of a lattice Λ or an elliptic curve C/Λ is the complex
number

j(Λ) = 1728
g32

g32 − 27g23
.

Note that j(Λ) is invariant under homothety (or equivalently, under SL2(Z) action), so
we get a function

j(τ) : SL2(Z)\H → C.

We won’t dive too deep into the amazing world of j(τ), but this would make a fun
semester project if you’re interested. For now, here are some important facts:

• j(τ) : SL2(Z)\H → C is a complex analytic isomorphism. In particular, C is the
moduli space of elliptic curves from the perspective of complex analysis.

• The Fourier expansion of j(τ) in q = e2πiτ is

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . .

Miraculously, all of these coefficients are integers. There’s a good reason for this
(which we’ll talk about today), but for now I want you to imagine how baffling
this must have been when it was first discovered.

• A modular function is a meromorphic function H → C that is invariant under
SL2(Z). It turns out that the set of all modular functions is the field of rational
functions C(j), where j is the j-invariant.

Last time, we built the moduli space of elliptic curves over C by thinking carefully about
lattices in C. Over other fields, we can’t use this approach. The j-function gives us an
alternative route:

Theorem 2.2. Let E and E ′ be elliptic curves over a field k. Then E and E ′ are
isomorphic over k if and only if j(E) = j(E ′). If char(k) ̸= 2 or 3 and j(E) = j(E ′),
then there is a field extension of degree at most 2 (if j ̸= 0, 1728), 4 (if j = 1728), or 6
(if j = 0) such that E and E ′ are isomorphic over K.

Proof. For the sake of simplicity, we’ll assume char(k) ̸= 2, 3 for both parts of the
theorem. This allows us to write E = V(y2−x3−Ax−B) and E ′ = V(y2−x3−A′x−B′)
for some A,A′, B,B′ ∈ k (by an exercise from last time). One can show that

j(E) = 1728
4A3

4A3 + 27B2
,
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which we may also denote by j(A,B). Using projective changes of coordinates (like last
time), one can show that E and E ′ are isomorphic over k if and only if there exists
µ ∈ k× such that A′ = µ4A and B′ = µ6B.

If E and E ′ are isomorphic over k, then we have such a µ, and

j(A′, B′) = 1728
4(µ4A)3

4(µ4A)3 + 27(µ6B)2

= 1728
4A3

4A3 + 27B2

= j(A,B).

Conversely, suppose j(A,B) = j(A′, B′) = J . If J = 0, then A = A′ = 0, and we need at
most a degree 6 extension K/k to obtain µ such that B′ = µ6B. Similarly, if j = 1728,
then B = B′ = 0 and we need at most a degree 4 extension K/k to obtain µ such that
A′ = µ4A.

The real trick comes when J ̸= 0, 1728. Now we use a miraculous substitution A′′ =
3J · (1728 − J) and B′′ = 2J · (1728 − J)2. You can check that j(A′′, B′′) = J . Now

substitute J = 1728 4A3

4A3+27B2 into A′′ and B′′ to find that

A′′ =

(
2735AB

4A3 + 27B2

)2

A,

B′′ =

(
2735AB

4A3 + 27B2

)3

B.

You get similar equations substituting with the expressions involving A′ and B′. Now
set

µ2 =

(
2735AB

4A3 + 27B2

)(
4A′3 + 27B′2

2735A′B′

)
and check that A′ = µ4A and B′ = µ6B. We need at most a degree 2 extension to find
µ, as claimed. □

Exercise 2.3. This theorem indicates that it is easier for two elliptic curves to be
isomorphic over k than over k. Find an example of two elliptic curves E,E ′ over a field
k such that E and E ′ are not isomorphic over k but are isomorphic over k.

Remark 2.4. From the perspective of the j-function, the moduli space of elliptic curves
is just A1

C. But elliptic curves with j = 0 or 1728 have non-trivial automorphisms,
whereas no points of A1

C have automorphisms. On the other hand, the quotient SL2(Z)\H
remembers the automorphisms at τ = i and τ = eπi/3, so this is a slightly richer moduli
space of elliptic curves. Ultimately, the best constructions of this moduli space should
admit automorphisms of points. This is where stacks come in.
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3. Elliptic curves over a scheme

We’re now going to talk about elliptic curves not just over a field, but over any scheme.
For a more thorough treatment of this material, see [Ols16, Chapter 13]. Since SpecZ is
the initial scheme, a moduli space of elliptic curves over Z would be a best case scenario.

To work at this level of generality, we’re going to start by defining this moduli “space”
as a category whose objects represent elliptic curves (or rather as a functor out of such
a category). In order to give geometric meaning to such a construction, we will need to
show that this functor satisfies descent with respect to a certain topology (roughly, that
we can define this functor on local open sets and then glue these opens together).

First, we have to say what an elliptic curve over a scheme is.

Definition 3.1. An elliptic curve over a scheme S is a smooth proper morphism p :
E → S, equipped with a chosen section e : S → E such that (E, e) ×S Spec k(s) is an
elliptic curve for each s ∈ S.1

A morphism of elliptic curves (p : E → S, e) → (p′ : E ′ → S ′, e′) is a pair of scheme
morphisms f : S → S ′ and g : E → E ′ such that g◦e = e′◦f , and such that the diagram

E E ′

S S ′

g

p p′

f

is Cartesian.

Exercise 3.2. If we take S = SpecZ, we need a smooth proper morphism p : E →
SpecZ with a section e : SpecZ → E such that (E, e)×Z SpecFp is an elliptic curve for

each prime p; we also need (E, e)×Z SpecQ to be an elliptic curve.

What does this mean in practicality? We need an equation

y2 + (a1x+ a2)y = x3 + a3x
2 + a4x+ a5 ∈ Z[x, y]

with discriminant ±1. The formula for the discriminant is

∆ =
disc(4(x3 + a3x

2 + a4x+ a5) + (a1x+ a2)
2)

256
,

where disc denotes the discriminant of a univariate polynomial.

Try proving that ∆ = ±1 has no integral solutions. This is how Tate proved the following
fact: there are no elliptic curves over Z.

Now we can define a category of elliptic curves, which will function as the raw material
for our moduli stack.

Definition 3.3. Let SchZ denote the category of Z-schemes. The moduli stack of elliptic
curves M1,1 is the category over SchZ with:

1This last condition means that the geometric fibers of p : E → S should all be elliptic curves.
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• objects (S, (p : E → S, e)), where S is a Z-scheme and (p : E → S, e) is an elliptic
curve over S, and

• morphisms of elliptic curves.

There is a forgetful functor π : M1,1 → SchZ given on objects by π(S, (p : E → S, e)) = S
and on morphisms by Fπ(f, g) = f .

Remark 3.4. The notation M1,1 signifies genus 1 and with 1 base point, as a special
case of the very interesting moduli spaces Mg,n. Sometimes M1,1 is denoted Mell.

We’ve called M1,1 a stack, but we haven’t said what a stack actually is. Very roughly, a
stack over SchZ is a sheaf on this category. To make sense of this, we have to talk about
(i) what sort of values our sheaf takes and (ii) how to glue with respect to a topology.

For point (i), we need categories fibered in groupoids.

Definition 3.5. Let S be a scheme. A category C with a functor π : C → SchS is fibered
in groupoids if:

(a) (Arrow lifitng) For all morphisms f : U → V in SchS and all y ∈ π−1(V ), there
exists a morphism ϕ : x→ y in C such that π(ϕ) = f .

(b) (Diagram lifting) For all diagrams in C of the form

π

 x

y z

ϕ

ψ

 =

U

V W,

f

g

and for all h : U → V factoring f (so f = g ◦ h), there exists a unique χ : x → y in
C such that ϕ = ψ ◦ χ and π(χ) = h.

Given U ∈ SchS, the fiber over U is the category C(U) whose objects are π−1(U) and
whose morphisms are ϕ : x→ y with x, y ∈ π−1(U) and π(ϕ) = id.

Exercise 3.6. Here are a few features of this definition that are good to prove:

(i) The morphism ϕ : x → y lifting f : U → V in part (a) is unique up to unique
isomorphism. (Hint: use part (b).)

(ii) A morphism ϕ in C is an isomorphism if and only if π(ϕ) is an isomorphism in SchS.

(iii) The fiber C(U) is a groupoid (i.e. all morphisms in C(U) are isomorphisms). This
justifies the terminology fibered in groupoids.

Next time, we’ll finish this discussion by talking about Grothendieck topologies and how
M1,1 is actually a sheaf.

Next time: wrapping up M1,1, then ring spectra and even periodic cohomology theo-
ries.
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