
LECTURE 15: DESCENT AND RING SPECTRA

STEPHEN MCKEAN

Last time, we saw that π : M1,1 → SchZ gives M1,1 the structure of a category fibered
in groupoids. Today, we’ll finish up the story of M1,1 being a stack.

1. Descent

Recall that a Grothendieck topology on a category is a collection of morphisms for each
object. These collections are called coverings, and they satisfy certain axioms that are
meant to mimic the axioms used to defined topologies on sets in terms of open subsets.
Here’s an exercise to help you get used to this definition.

Exercise 1.1. Let C be a category with fiber products and a chosen Grothendieck
topology. Show that if {fi : Ui → X}i∈I is a covering and {gj : Vj → X}j∈J is any
collection of maps, then {fi : Ui → X}i∈I ∪ {gj : Vj → X}j∈J is a covering.

Example 1.2. Here is an important chain of Grothendieck topologies on SchZ, listed in
increasing order of coarseness.

fpqc ⊂ fppf ⊂ étale ⊂ Nisnevich ⊂ Zariski.

Here, fpqc means faithfully flat and quasicompact maps (with an oft forgotten finiteness

condition), while fppf means faithfully flat maps of finite presentation. Étale maps
are the algebro-geometric analog of local homeomorphisms. Nisnevich maps are étale
maps that induce isomorphisms on residue fields (so local homeomorphisms that are
arithmetically trivial).

It makes sense to talk about sheaves with respect to a given Grothendieck topology.

Definition 1.3. A stack over a scheme S (with respect to a Grothendieck topology τ
on SchS) is a category C fibered in groupoids over SchS such that

SchS → Sets

U 7→ C(U)

is a sheaf of groupoids. This consists of two conditions:

(i) (Objects glue) For all coverings {Ui → U}, all xi ∈ C(Ui), and all (iso)morphisms
αij : xi|Ui×UUj

→ xj|Ui×UUj
satisfying the cocycle condition αik = αjk ◦ αij over

Ui ×U Uj ×U Uk, there exists an object x ∈ C(U) (unique up to isomorphism) and
(iso)morphisms αi : x|Ui

→ xi in C(Ui) such that αij = αj|Ui×UUj
◦ (αi|Ui×UUj

)−1.
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(ii) (Morphisms glue) Given a covering {Ui → U}, objects x, y ∈ C(U), and (iso)morphisms
αi : x|Ui

→ y|Ui
such that αi|Ui×UUj

= αj|Ui×UUj
, there is a unique (iso)morphism

α : x → y such that α|Ui
= αi.

Remark 1.4. Another common name for condition (i) is: “the descent datum is effec-
tive.” A category fibered in groupoids that satisfies morphism gluing is sometimes called
a prestack.

This definition might seem like a lot at first, but that’s exactly how sheaves felt the first
time you learned them.1 Here’s an exercise to get you comfortable with this definition.

Exercise 1.5. Let Bunr/S be the category of rank r vector bundles over S-schemes.
Objects of this category are rank r vector bundles E → X, where X is an S-scheme.
Morphisms in this category are pullbacks (i.e. there is a morphism E ′ → E if and only
if there is a (necessarily unique) S-scheme morphism ϕ : X ′ → X such that E ′ ∼= ϕ∗E.

(i) Define a forgetful functor π : Bunr/S → SchS.

(ii) Prove that π gives Bunr/S the structure of a category fibered in groupoids.

(iii) Prove that Bunr/S is a stack in the Zariski topology.

Note that for gluing objects, it is not true that a vector bundle E → X can be
recovered from its restrictions E|Ui

, where {Ui → X} is a covering. This is because
any vector bundle is trivialized by some covering. So for this part, you also need to
use the isomorphisms αij : Ei|Ui×XUj

→ Ej|Ui×XUj
satisfying the cocycle condition.

Gluing morphisms is easier: you just need to show that an isomorphism between
two vector bundles E → X and E ′ → X can be defined locally on a covering and
glued in a unique way if the isomorphisms E|Ui

→ E ′|Ui
agree on overlaps.

If you’re a sheaf in one topology, then you’re automatically a sheaf in any coarser topol-
ogy. It turns out that M1,1 is an fpqc stack, and hence a stack in the fppf, étale, Nis-
nevich, and Zariski topologies as well. Because we’re behind in the class and the proof
of even Zariski descent is a bit lengthy, I’ll punt this one to some nice notes (written by
homotopy theorists).

Theorem 1.6. M1,1 is an fpqc stack.

Proof. See Section 3 of https://webspace.science.uu.nl/~meier007/Mell.pdf. □

There’s much more to the story that we’ll sadly have to skip. If you’re interested in
learning more, you can go read about representability of stacks, stacks with certain
representability properties (like Deligne–Mumford and Artin stacks), and much more in
Vistoli’s notes: https://arxiv.org/pdf/math/0412512.pdf.

1Or at least that’s how I personally felt.

https://webspace.science.uu.nl/~meier007/Mell.pdf
https://arxiv.org/pdf/math/0412512.pdf
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2. Ring spectra

We’re now taking a hard pivot back to homotopy theory. The moduli stack of elliptic
curves will return in the final episodes of the tmf cinematic universe.

Recall that a spectrum is, roughly, a sequence of topological spaces, together with maps
connecting sequential spaces in a precise way.

Definition 2.1. A spectrum is a sequence (Xn)n∈N of pointed topological spaces, to-
gether with base point preserving continuous maps σn : S1 ∧Xn → Xn+1 for all n ∈ N.

A morphism of spectra is a sequence of continuous maps Xn → Yn that fit into commu-
tative squares with the structure maps.

Genera are ring homomorphisms of the form ΩG
∗ → R, where ΩG

∗ is the G-cobordism
ring for some Lie group G. We saw in the case of G = SO that there is a Thom spectrum
MSO such that π∗MSO ∼= ΩSO

∗ . Likewise, one can define the Thom spectrum MG for
any Lie group G and prove that π∗MG ∼= ΩG

∗ .

This gives rise to a natural question: is there a spectrum S such that π∗S ∼= R, and a
map of spectra MG → S such that π∗(MG → S) recovers the genus? Lifting genera to
the level of spectra is an interesting question, because the extra structure (e.g. higher
homotopy groups) can tell us new things about the genus. Topological modular forms
were first discovered by answering this sort of question.

In order for any of this to make sense, notice that π∗S needs to be a ring. Earlier in the
class, we wondered about how π∗MSO could recover the graded ring structure of ΩSO

∗ ,
instead of just the sequence of abelian groups ΩSO

0 ,ΩSO
1 , . . . This is a special feature of

ring spectra.

In order to define ring spectra, we need a suitable product operation for spectra. This is
given by the smash product, which is induced from the smash product of pointed topolog-
ical spaces. In contrast to the smash product of spaces, which is fairly straightforward,
smash products of spectra are a real pain to get right. There are lots of models for defin-
ing the smash product, but it will be easiest for us to talk about Adams’s old-fashioned
approach.

Definition 2.2. Let X = (Xn, σn) and Y = (Yn, τn) be spectra. The smash product
X ∧ Y has spaces

(X ∧ Y )2n := Xn ∧ Yn,

(X ∧ Y )2n+1 := S1 ∧Xn ∧ Yn

and structure maps

ρ2n := id : S1 ∧Xn ∧ Yn → S1 ∧Xn ∧ Yn,

ρ2n+1 := σn ∧ τn : S1 ∧ S1 ∧Xn ∧ Yn ≃ (S1 ∧Xn) ∧ (S∧
1 Yn) → Xn+1 ∧ Yn+1.
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While this definition is simple enough, Adams’s smash product is only well-behaved if
S1 ∧− is invertible. But once we stabilize, ∧ gives the category of spectra the structure
of a symmetric monoidal category. The monoidal unit is given by the sphere spectrum
S := (S0, S1, S2, . . .).

Definition 2.3. A map of spectra f : X → Y is a weak equivalence if the induced map
f∗ : πnX → πnY is an isomorphism for all n. The stable homotopy category, denoted SH,
is the category of spectra up to weak equivalences. If two spectra X and Y are weakly
equivalent, we write X ≃ Y .

The following exercise is to verify that (SH,∧) is symmetric monoidal with unit S.

Exercise 2.4. Show that X∧S ≃ X for any spectrum X. Also show that X∧Y ≃ Y ∧X
for any spectra X and Y .

Now we can define ring spectra.

Definition 2.5. A ring spectrum is a spectrum E, together with a multiplication map
µ : E ∧ E → E, a unit map u : S → E, and homotopies

µ(id ∧ µ) ∼ µ(µ ∧ id),

µ(id ∧ u) ∼ id ∼ µ(u ∧ id),

which witness associativity and unitality, respectively.

Example 2.6. The sphere spectrum is a ring spectrum (which you should check). It
turns out that MSO is also a ring spectrum, but not every Thom spectrum is a ring
spectrum! If you think back to our discussion of π∗MSO⊗Q, it might not be so surprising
that if G is an H-space, then MG is a ring spectrum. If you’re looking for a homotopy-
flavored semester paper, writing about which Thom spectra are ring spectra would be a
fun dive into some classical literature.

We’ll close with an exercise:

Exercise 2.7. Let E be a ring spectrum. Prove that the ring structure on E induces a
graded ring structure on π∗E.

If you’re interested in learning about homotopy theory, I strongly encourage you to
think about this exercise. If you’re really motivated, try to use your proof to write down
explicitly what the ring structure on π∗S might look like. If you’re less excited about
homotopy theory, then you can take this exercise as a fact and notice that this gives us
the desired ring structure on π∗S, π∗MSO, and so on.

Next time, we’ll discuss a special class of spectra and their associated cohomology the-
ories.
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Next time: even periodic cohomology theories, formal group laws, and elliptic coho-
mology.
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