
LECTURE 16: RING SPECTRA, EVEN PERIODIC COHOMOLOGY,
AND COMPLEX ORIENTATIONS

STEPHEN MCKEAN

1. Ring spectra

Recall that we want to lift genera, which are ring homomorphisms ΩG
∗ → R, to the level

of spectra. In order to do this, we need the notion of a ring spectrum.

Definition 1.1. A ring spectrum is a spectrum E, together with a multiplication map
µ : E ∧ E → E, a unit map u : S → E, and homotopies

µ(id ∧ µ) ∼ µ(µ ∧ id),

µ(id ∧ u) ∼ id ∼ µ(u ∧ id),

which witness associativity and unitality, respectively.

Remark 1.2. There was a complaint last time about what ∼ is supposed to mean in
the previous definition. The glib answer is that we’re requiring the diagrams

E ∧ E ∧ E E ∧ E

E ∧ E E

µ∧id

id∧µ µ

µ

and
S ∧ E E E ∧ S

E ∧ E E E ∧ E

∼=

u∧id id id∧u

∼=

µ µ

to commute in the stable homotopy category. But this still doesn’t tell you what a
homotopy of maps f, g : X → Y of spectra should be. Well, a homotopy of maps of
spectra should be a map of spectra h : X∧I+ → Y , where (X∧I+)n = Xn∧([0, 1]∪{∗}),
such that h0 = f and h1 = g.

For this definition to truly work, we need to be a little more flexible in what we mean
by a map of spectra. A map of spectra X → Y does not actually need to be defined for
all Xn → Yn, but rather needs to be defined on all but finitely many Xn → Yn. Another
way to think of this is that X → Y needs to be defined on all Xn → Yn for all n ≥ N
for some N .

This is all related to the subtleties that go into defining the stable homotopy category.
Another good semester project would be to write about two or three different ways of
defining SH and proving that you get equivalent categories.

Example 1.3. The sphere spectrum is a ring spectrum (which you should check). It
turns out that MSO is also a ring spectrum, but not every Thom spectrum is a ring
spectrum! If you think back to our discussion of π∗MSO⊗Q, it might not be so surprising
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that if G is an H-space, then MG is a ring spectrum. If you’re looking for a homotopy-
flavored semester paper, writing about which Thom spectra are ring spectra would be a
fun dive into some classical literature.

Example 1.4. Let U(n) denote the degree n unitary group. Unitary bundles are classi-
fied by maps into the classifying space BU(n), where you pull back the universal bundle
ξn → BU(n) to get your unitary bundle. The direct sum of unitary bundles is classified
by a map BU(n)× BU(m) → BU(n+m), fitting into a pullback square

ξn ⊕ ξm ξn+m

BU(n)× BU(m) BU(n+m).

Since Th(V ⊕W ) ≃ Th(V ) ∧ Th(W ), this diagram gives us a map Th(ξn) ∧ Th(ξm) →
Th(ξn+m). The Thom spectrum MU associated to BU has spaces Th(ξn), so we have just
constructed a map MU(n) ∧MU(m) → MU(n +m). Taking colimits as n and m go to
∞ gives us a map of spectra µ : MU ∧MU → MU. It turns out that this multiplication
is part of the ring structure on MU.

The ring structure on a spectrum gives you a graded ring structure on its homotopy
groups:

Exercise 1.5. Let E be a ring spectrum. Prove that the ring structure on E induces a
graded ring structure on π∗E.

If you’re interested in learning about homotopy theory, I strongly encourage you to
think about this exercise. If you’re really motivated, try to use your proof to write down
explicitly what the ring structure on π∗S might look like. If you’re less excited about
homotopy theory, then you can take this exercise as a fact and notice that this gives us
the desired ring structure on π∗S, π∗MSO, and so on.

2. Even periodic cohomology theories

We’re now going to talk about an important class of spectra (and their associated coho-
mology theories).

Definition 2.1. If E = (En, σn) is a spectrum and X is a pointed topological space,
then the E-valued cohomology of X is given by

En(X) := [Σ∞X,ΣnE].

Here, Σ∞X := (X,ΣX,Σ2X, . . .) is the suspension spectrum associated toX, and ΣnE =
(. . . ,ΣnE0,Σ

nE1, . . .) is the n-fold suspension of E. When E is an Ω-spectrum (meaning
that En ≃ ΩEn+1 for all n), we get a simpler formula

En(X) = [X,En].
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In both of these formulas, [−,−] denotes the set of homotopy classes of maps (whether
maps of spectra or maps of pointed spaces). When E is an Ω-spectrum, the spaces En

are H-spaces, which yields an abelian group structure on [−, En].

Example 2.2. K-theory is a cohomology theory where K0(X) is the group of virtual
complex vector bundles on X. Complex vector bundles are classified by BU, and virtual
complex bundles are classified by BU×Z (the Z records the virtual dimension). We can
build an Ω-spectrum

KU := (BU× Z,Ω(BU× Z),Ω2(BU× Z), . . .),

which at first looks unwieldly. However, one version of Bott periodicity gives a homotopy
equivalence Ω2(BU× Z) ≃ BU× Z. In particular, KUn+2 ≃ KUn for all n. This implies
that KUn+2(X) ∼= KUn(X) for all n and any pointed space X, so complex K-theory
is a periodic cohomology theory. One can even show that this periodicity is given by
multiplication by the Bott class, which is an invertible element β ∈ KU∗(pt) of degree
−2.

Since Ω(BU× Z) ≃ U, we can calculate

KU2n(pt) ∼= π0(BU× Z) = Z,
KU2n+1(pt) ∼= π0(U) = 0.

That is, the cohomology KU∗(pt) is concentrated in even degrees, so complex K-theory
is an even cohomology theory. Together, these properties inspire a definition.

Definition 2.3. A spectrum (or cohomology theory) E is even periodic if (a) Ei(pt) = 0
for all odd i and (b) there exists β ∈ E−2(pt) such that β is invertible in E∗(pt).

Example 2.4. The spectrumMU is even, because π∗MU ∼= Z[x1, x2, . . .] with |xi| = −2i,
but this also shows us that MU is not periodic. You can build an even periodic spectrum
out of MU by taking

MP :=
∨
k∈Z

(S2k ∧MU).

Here, the wedge sum of two spectra is built by taking wedge sums of their constituent
spaces, which is well-defined since S1 ∧ (

∨
i E

i
n) =

∨
i(S

1 ∧Ei
n). (Categorically speaking,

the stable homotopy category has coproducts.)

At the level of cohomology, this gives us

MPn(X) =
∏
k∈Z

MUn+2k(X).

Very creatively, MP is called the even periodic version of complex cobordism.

Exercise 2.5. Construct the Bott element for MP. (That is, find an element β ∈
MP−2(pt) such that β is invertible in MP∗(pt).)
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3. Complex oriented spectra

Complex cobordism MU is a remarkable theory. It gives a tremendous amount of struc-
ture to any commutative ring spectrum that receives a map from it. Because we haven’t
talked about commutativity of ring spectra (which is a subtle notion), we’ll take a dif-
ferent entryway to this story.

If E is a ring spectrum, then we say that its cohomology is multiplicative.

Definition 3.1. A multiplicative cohomology theory is complex oriented if the map
E2(CP∞) → E2(S2) is surjective. (This map is induced by the inclusion S2 ≃ CP1 →
CP∞.)

Choosing a base point of CP∞ give a decomposition En(CP∞) ∼= Ẽn(CP∞) ⊕ En(pt),
where Ẽn is reduced cohomology. The same sort of decomposition occurs when we choose
a base point for S2.

Since E is a ring spectrum, π0E is a ring. The ring structure on π0E comes with a unit
t̄, playing the role of 1. Given a map θ : E2(CP∞) → E2(S2), we get an induced map
θ̄ : Ẽ2(CP∞) → Ẽ2(S2) ∼= E0(pt) ∼= π0E. Since the image of θ̄ is a π0E-module, θ̄ is
surjective if and only if t̄ lies in the image of θ̄. We can thus redefine complex orientation
as follows.

Definition 3.2. A complex orientation of a multiplicative cohomology theory E is a
choice of t ∈ Ẽ2(CP∞) such that θ̄(t) = t̄ is the canonical generator of Ẽ2(S2).

Exercise 3.3. Prove that ordinary cohomology is complex orientable by proving that
S2 ↪→ CP∞ induces an isomorphism H2(CP∞;R) ∼= H2(S2;R) for any commutative ring
R.

What is the point of all of this? The space CP∞ is the classifying space of complex line
bundles, and E2(CP∞) is the natural home for the first Chern class. Next time, we’ll
make this rigorous by showing how a complex orientation gives you a theory of first
Chern classes for E. We will then study the failure of c1(L⊗ L′) to behave like a group
homomorphism. This will give rise to formal group laws, which we’ll see are also a result
of the group structure on an algebraic group.

We’ll then see how elliptic integrals give us a bridge between elliptic curves and certain
complex oriented, even periodic cohomology theories known as elliptic cohomology.

Next time: formal group laws and the Â and elliptic genera.
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