
LECTURE 17: FORMAL GROUP LAWS AND THE Â AND ELLIPTIC
GENERA

STEPHEN MCKEAN

Last time, we said that a ring spectrum E is complex oriented if the map E2(CP∞) →
E2(S2) is surjective. The claim was that this gives us enough structure to develop a first
Chern class for E. Let’s briefly recall the relevant setup.

Choosing a base point of CP∞ give a decomposition En(CP∞) ∼= Ẽn(CP∞) ⊕ En(pt),
where Ẽn is reduced cohomology. The same sort of decomposition occurs when we choose
a base point for S2.

Since E is a ring spectrum, π0E is a ring. The ring structure on π0E comes with a unit
t̄, playing the role of 1. Given a map θ : E2(CP∞) → E2(S2), we get an induced map
θ̄ : Ẽ2(CP∞) → Ẽ2(S2) ∼= E0(pt) ∼= π0E. Since the image of θ̄ is a π0E-module, θ̄ is
surjective if and only if t̄ lies in the image of θ̄. We can thus redefine complex orientation
as follows.

Definition 0.1. A complex orientation of a multiplicative cohomology theory E is a
choice of t ∈ Ẽ2(CP∞) such that θ̄(t) = t̄ is the canonical generator of Ẽ2(S2).

Exercise 0.2. Prove that ordinary cohomology is complex orientable by proving that
S2 ↪→ CP∞ induces an isomorphism H2(CP∞;R) ∼= H2(S2;R) for any commutative ring
R.

What is the point of all of this? The space CP∞ is the classifying space of complex
line bundles, and E2(CP∞) is the natural home for the first Chern class. Today, we’ll
make this rigorous by showing how a complex orientation gives you a theory of first
Chern classes for E. We will then study the failure of c1(L⊗ L′) to behave like a group
homomorphism. This will give rise to formal group laws, which we’ll see are also a result
of the group structure on an algebraic group.

We’ll then see how elliptic integrals give us a bridge between elliptic curves and certain
complex oriented, even periodic cohomology theories known as elliptic cohomology.

The key result of having a complex orientation t is an isomorphism of the form

E∗(CP∞) ∼= E∗(pt)[[t]].

(Compare to H∗(CP∞;Z) ∼= limZ[x]/(xn) with |x| = 2.) Now CP∞ is the classifying
space of line bundles, and its cohomology is generated by the first Chern class. So c1 := t,
which is how a complex orientation gives us c1.
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As a cohomology class, c1 gives us a map from bundles over CP∞ (i.e. line bundles over
a space X) to E∗(pt). If we want to compute c1(L ⊗ L′), we use the universal tensor
product

ξ ⊗ ξ ξ

CP∞ × CP∞ CP∞.

On cohomology, this induces a map

E∗(CP∞) → E∗(CP∞)⊗ E∗(CP∞)

c1 7→ F (x1, x2).

Here, F (x1, x2) ∈ E∗(pt)[[x1, x2]] is a formal power series satisfying c1(L⊗L′) = F (c1(L), c1(L
′)).

Exercise 0.3. Using properties of c1, prove that:

(i) F (x, 0) = F (0, x) = x.

(ii) F (x, y) = F (y, x).

(iii) F (F (x, y), z) = F (x, F (y, z)).

1. Formal group laws

While formal group laws arise for us in expanding c1(L ⊗ L′), they derive their name
from algebraic groups. In particular, a formal group law is the power series expansion
of the group operation of an algebraic group in a neighborhood of the identity.

Example 1.1. The identity of Ga is 0. In a neighborhood of 0, the group law is given by
(0+x)+(0+y) = x+y. The corresponding additive formal group law is f(x, y) = x+y.

The identity of Gm is 1. In a neighborhood of 1, the group law is given by (1+x)·(1+y) =
1+x+y+xy. The corresponding multiplicative formal group law is f(x, y) = x+y+xy.

In an effort to glean from algebraic groups the key properties of a formal group law,
we are led to the following definition. (This is just the definition for 1-dimensional
commutative formal group laws. One can also define n-dimensional formal group laws,
but we won’t need these.)

Definition 1.2. A formal group law over a ring R is a formal power series F (x, y) ∈
R[[x, y]] satisfying:

(i) F (x, 0) = F (0, x) = x.

(ii) F (x, y) = F (y, x).

(iii) F (F (x, y), z) = F (x, F (y, z)).

These are the identity, commutativity, and associativity axioms under the guise of the
power series expansion.



LECTURE 17: FORMAL GROUP LAWS AND THE Â AND ELLIPTIC GENERA 3

Example 1.3. In ordinary cohomology, c1(L ⊗ L′) = c1(L) + c1(L
′). So if E is the

spectrum representing oriented cohomology, then its associated formal group law is the
additive formal group law.

Example 1.4. In K-theory, we have c1(L) = [L] − 1 ∈ K0(X) for any line bundle
L → X. Thus

c1(L⊗ L′) = [L⊗ L′]− 1

= ([L]− 1)([L′]− 1) + [L] + [L′]− 2

= ([L]− 1)([L′]− 1) + ([L]− 1) + ([L′]− 1)

= c1(L) + c1(L
′) + c1(L)c1(L

′).

So the formal group law associated to K-theory is the multiplicative group law.

2. Genera

We just learned that the additive and multiplicative formal group laws come from Ga and
Gm, respectively. But there are more interesting 1-dimensional commutative algebraic
groups out there, like elliptic curves. What do their associated formal group laws look
like?

Well, the easiest formulation of the group law on an elliptic curve comes from writing
it as a quotient C/Λ. The group structure on C/Λ comes from the group structure on
Λ, and we recover Λ from its elliptic curve by taking period integrals over homology
generators. Recall that we could write these period integrals purely in terms of one
parameter, giving us integrals of the form∫

dx√
4x3 − ax− b

.

We’re going to change this notation a bit to match up with conventions in topology. A
Jacobi elliptic curve is an elliptic curve of the form

J := V(y2 = εx4 − 2δx2 + 1),

where ε(δ2 − ε)2 ̸= 0.

Exercise 2.1. Try writing a Jacobi elliptic curve in Weierstrass form to verify that these
are indeed elliptic curves.

The lattice associated to a Jacobi elliptic curve is given by period integrals of the form∫
dx√

εx4 − 2δx2 + 1
.

Under this parameterization, the identity of the elliptic curve is given at x = 0. Moreover,
we add two points on our curve by adding in C modulo the lattice Λ, and then returning



4 STEPHEN MCKEAN

back to our elliptic curve. So in the neighborhood of the identity, points on our elliptic
are added according to∫ z

0

dx√
εx4 − 2δx2 + 1

+

∫ z′

0

dx√
εx4 − 2δx2 + 1

.

In other words, the formal group law FJ(z, z
′) associated to the Jacobi elliptic curve J

satisfies the equation∫ z

0

dx√
εx4 − 2δx2 + 1

+

∫ z′

0

dx√
εx4 − 2δx2 + 1

=

∫ FJ (z,z
′)

0

dx√
εx4 − 2δx2 + 1

.

Remark 2.2. At this point, you should think, “This is all fine and good, but we don’t
even have a closed form for these elliptic integrals. How are we ever supposed to get a
closed form for FJ?” Behold the terrible might of Euler.

Theorem 2.3 (Euler).

FJ(x1, x2) =
x1

√
εx4

1 − 2δx2
1 + 1 + x2

√
εx4

2 − 2δx2
2 + 1

1− εx2
1x

2
2

.

Exercise 2.4. Expand out FJ(x1, x2) as a power series and verify that it satisfies the
axioms of a formal group law.

Remark 2.5. While our narrative of using period integrals required that our elliptic
curves be defined over C, Euler’s formula for the formal group law holds for any elliptic
curve defined over Z[δ, ε]. Moreover, the previous exercise shows you that you can write
out the formal group law as a power series over Z[1

2
, δ, ε].

Remark 2.6. Recall (from the first few weeks of class) that

logJ(z) =

∫ z

0

dx√
εx4 − 2δx2 + 1

is the logarithm of the elliptic genus. The corresponding genus satisfies ΦJ(CP2) = δ
and ΦJ(HP2) = ε. By keeping δ and ε as variables (satisfying ε(δ2 − ε)2 ̸= 0) gives us
the universal elliptic genus.

However, if we specialize ε and δ such that ε(δ2 − ε)2 = 0, we get a singular elliptic
curve. When δ = ε = 1, logJ simplifies to

logL(z) =

∫ z

0

dx

1− x2
,

which you may recall as the logarithm of the L-genus (i.e. signature genus). When
δ = −1/8 and ε = 0, we get

logA(z) =

∫ z

0

dx√
1 + (x/2)2

.
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This is the logarithm of the Â-genus, which is the index of the Dirac operator on spin
manifolds. This is an interesting and important part of the story that we unfortunately
don’t have enough time to cover. (But writing about spin manifolds, the Dirac operator,

and the Â-genus would make a good written project!)

Exercise 2.7. What singularity types do the elliptic curves related to the L-genus and
Â-genus have?

3. Elliptic cohomology

We saw how every complex oriented cohomology theory yields a formal group law. So
what is the cohomology theory underlying the Jacobi formal group law? The Landweber
exact functor theorem gives a list of sufficient criteria for a formal group law to determine
its cohomology theory in a systematic way. Landweber, Ravenel, and Stong showed that
elliptic formal group laws satisfy these criteria, which allows one to write down a formula
for elliptic cohomology :

Ell∗(X) = MP∗(X)⊗MP∗(pt) Z[12 , δ, ε,∆
−1],

where ∆ = ε(δ2−ε)2 and MP is the periodization of MU. Here’s an abstracted definition
of elliptic cohomology:

Definition 3.1. An elliptic cohomology theory consists of:

(i) An even periodic multiplicative cohomology theory.

(ii) An elliptic curve C over a ring R.

(iii) An isomorphism E0(pt) ∼= R and an isomorphism1 of the formal group law associ-
ated to E with the formal group law associated to C.

By keeping δ and ε as parameters, we get a “universal” elliptic formal group law and
elliptic genus. It is natural to wonder if there is a spectrum whose cohomology is this
“universal” elliptic cohomology theory. In order to make this precise, one needs to work
with the universal elliptic curve, namely the elliptic curve from which all elliptic curves
are pulled back.

We’ve already discussed how automorphisms prevent such an object from occuring in
any näıve construction of the moduli space of elliptic curves. But one key feature of
working with stacks is that we in fact get a universal elliptic curve. So if we want to
build a spectrum that fills the role of the “universal elliptic spectrum,” we need a way
to mimic the construction of M1,1 in the world of spectra. This is why we’ll need to talk
about derived algebraic geometry. The eventual payoff will be tmf, the universal elliptic
spectrum.

1I haven’t told you what an morphism of formal group laws is, let alone an isomorphism. It’s a good
exercise to work out these definitions for yourself.
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Next time: Witten genus.
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