
LECTURE 18: ELLIPTIC COHOMOLOGY

STEPHEN MCKEAN

1. Elliptic cohomology

Last time, we saw how every complex oriented cohomology theory yields a formal group
law (the class t ∈ Ẽ2(CP∞) plays the role of c1, and the formal group law is given by
expanding c1(L⊗ L′) as a power series in c1(L) and c1(L

′)). So what is the cohomology
theory underlying the Jacobi formal group law? The Landweber exact functor theorem
gives a list of sufficient criteria for a formal group law to determine its cohomology theory
in a systematic way.

To talk about Landweber exactness, we first have to meet the Lazard ring. We’re going
to tell this story in the periodic setting, but there’s also a non-periodic version (in which
you should replace MP below with MU).

Definition 1.1. The Lazard ring L is the ring Z[{aij}i,j∈N], subject to the relations:

(i) a10 = a01 = 1.

(ii) aij = aji.

(iii) ℓ(x, ℓ(y, z)) = ℓ(ℓ(x, y), z), where ℓ(x, y) :=
∑

i,j aijx
iyj ∈ L[[x, y]].

As you can see, L looks like it is cooked up to be the universal ring with a formal group
law. This is indeed the case.

Theorem 1.2. If R is a ring with a formal group law f(x, y) ∈ R[[x, y]], then there is a
unique ring homomorphism ϕ : L → R such that ϕ∗ℓ = f .

Exercise 1.3. Prove Theorem 1.2.

We’ve actually seen L before: L ∼= MP∗(pt), where MP is the periodization of MU. So
given a formal group law f over R, we’d like to build a cohomology theory. It would be
really nice if we could just “change scalars” from the cohomology theory coming from
the universal formal group law:

E∗
f (X) := MP∗(X)⊗MP∗(pt) R.

In order for this to give us a spectrum, the assignment X 7→ E∗
f (X) needs to satisfy the

properties of a generalized cohomology theory. A sufficient criterion is for X 7→ E∗
f (X) to

be exact, i.e. for R to be a flat MP∗(pt)-module. But this is a very restrictive condition.
A weaker sufficient condition is Landweber exactness :
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Definition 1.4. Let f(x, y) be a formal group law over R. Using the associativity axiom,
we can take [p] · x := f(f(· · · (f(x, x), x))) to denote adding x to itself p times. When p

is a prime, let vi,p denote the coefficient of xpi in [p] · x.

The formal group law f is called Landweber exact if v0,p, . . . , vi,p is a regular sequence in
R for all p and all i.

Landweber, Ravenel, and Stong showed that elliptic formal group laws satisfy the criteria
of the Landweber exact functor theorem, which allows one to write down a formula for
elliptic cohomology :

Ell∗(X) = MP∗(X)⊗MP∗(pt) Z[12 , δ, ε,∆
−1],

where ∆ = ε(δ2−ε)2 and MP is the periodization of MU. Here’s an abstracted definition
of elliptic cohomology:

Definition 1.5. An elliptic cohomology theory consists of:

(i) An even periodic multiplicative cohomology theory.

(ii) An elliptic curve C over a ring R.

(iii) An isomorphism E0(pt) ∼= R and an isomorphism1 of the formal group law associ-
ated to E with the formal group law associated to C.

A spectrum that determines an elliptic cohomology theory is called an elliptic spectrum.

By keeping δ and ε as parameters, we get a “universal” elliptic formal group law and
elliptic genus. It is natural to wonder if there is a spectrum whose cohomology is this
“universal” elliptic cohomology theory. In order to make this precise, one needs to work
with the universal elliptic curve, namely the elliptic curve from which all elliptic curves
are pulled back.

We’ve already discussed how automorphisms prevent such an object from occuring in
any näıve construction of the moduli space of elliptic curves. But one key feature of
working with stacks is that we in fact get a universal elliptic curve. So if we want to
build a spectrum that fills the role of the “universal elliptic spectrum,” we need a way
to mimic the construction of M1,1 in the world of spectra. This is why we’ll need to talk
about derived algebraic geometry. The eventual payoff will be tmf, the universal elliptic
spectrum.

2. Lifting genera

We’ve mentioned the Â-genus a few times in this course, always defining it in terms of
its logarithm. The only other way to define the Â genus is as the index of the Dirac

1I haven’t told you what an morphism of formal group laws is, let alone an isomorphism. It’s a good
exercise to work out these definitions for yourself.
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operator. The Dirac operator /D is a square root of (minus2) the Laplace operator

∆ = −
∑
i

∂2

∂x2
i

,

which we saw in an exercise earlier in the class (about isospectral but non-isometric tori).

Exercise 2.1. The Dirac operator takes the form

/D =
n∑

i=1

γi
∂

∂xi

and satisfies /D
2
= −∆.

(i) Calculate /D when n = 1.

(ii) Show that for n > 1, the coefficients γi cannot be complex numbers.

(iii) For n > 1, find matrices γi that give you a solution to /D
2
= −∆. Are your solutions

unique?

Definition 2.2. Once you’ve constructed the correct Dirac operator, you can consider
its action on the tangent space of a manifold M . The index of /D is the value ind( /D) =

dimker /D − dim coker /D. Define the Â-genus of M as indM( /D).

Remark 2.3. The previous definition is a little bit of a gentle lie, since the Â-genus
need not be an integer on arbitrary manifolds. The Atiyah–Singer index theorem implies
that Â is an index on spin manifolds, and that

Â : ΩSpin
∗ → Z

is a genus.

Next time: The Witten genus.
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2The sign convention is a physical artifact and isn’t too important.
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