
LECTURE 22: CONSTRUCTING TMF (CONTINUED)

STEPHEN MCKEAN

Last time, we described how to construct TMF as global sections of a sheaf of E∞-ring
spectra:

TMF := Γ(M1,1,Otop) ∼= lim
SpétA→M1,1

Otop(SpétA → M1,1).

Since Otop is constructed so that Otop(SpétA → M1,1) is the elliptic spectrum de-
termined by the elliptic curve classified by SpétA → M1,1, we find that TMF is the
universal elliptic spectrum. But this was just one of our goals. The other goal was to
lift the Witten genus ΩString

∗ → MF∗ to the level of spectra. For this purpose, TMF is
insufficient. Today, we’ll work towards the desired target spectrum for lifting the Witten
genus.

1. Compactification of M1,1

Over a field k, the j-invariant defines a morphism

j : (M1,1)k → A1
k.

The scheme A1
k is a coarse moduli space for M1,1 (this means that M1,1 maps uniquely

to A1
k, and any map from M1,1 to another scheme factors through A1

k). It is evident that
A1

k is not compact, and P1
k gives a natural compactification of A1

k.

We’d like to construct a stack M1,1 ⊃ M1,1 such that extending the j-invariant to P1
k

gives us a coarse moduli space
ȷ̄ : (M1,1)k → P1

k.

One can compute the j-invariant as 1728
c34
∆
, where ∆ is the discriminant of the defining

equation of our elliptic curve. So whatever the points of M1,1 −M1,1 are, they should
have j ∈ {∞} = P1

k − A1
k, which corresponds to ∆ = 0. In particular, M1,1 − M1,1

should consist of singular pointed cubic curves to which elliptic curves degenerate.

It turns out that we only need to add nodal cubic curves (where the base point is distinct
from the node) to construct M1,1.

Exercise 1.1. Prove that over a field k, any two nodal cubic curve with base points in
the smooth loci are isomorphic. (Hint: show that normalization takes such a curve to P1

k

with 3 marked rational points. Then show that P1 marked by {p1, p2, p3} is isomorphic
to P1

k marked by {0, 1,∞}.)

Recall that M1,1 was constructed as the category of elliptic curves over a base scheme,
together with a forgetful functor that just returns the base scheme. We can extend this
category to include nodal cubic curves. Over an arbitrary scheme, a nodal cubic curve
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should be a degree 3 curve C → S with an ordinary double point, together with a section
e : S → C that does not meet the singular locus of C. You have to do a little work to
make sense of morphisms to and from nodal cubic curves, as well as proving that this
enlarged category is indeed a stack.

This is known as the Deligne–Mumford compactification M1,1 of M1,1. Here, compacti-
fication refers to the fact that |M1,1| is not a compact topological space, but |M1,1| is.
(The vertical bars mean the points of the stack, i.e. the set of maps from the spectrum
of a field into the stack, endowed with a uniquely defined but technically involved topol-
ogy.) Thinking about compactifying the coarse moduli space should give you a pretty
good image of what’s going on here.

Remark 1.2. In the grand scheme of things, we didn’t have to work too hard to com-
pactify M1,1. Deligne–Mumford compactification and Deligne–Mumford stacks get their
name from Deligne and Mumford’s work on compactifying Mg,n in general. This is a
much harder prospect, as well as a beautiful piece of math touching algebraic geometry,
complex geometry, low-dimensional topology, and dynamics.

2. Constructing Otop

M1,1

As with M1,1, we can treat M1,1 as a spectral Deligne–Mumford stack. Last time, we
used the crucial fact that Deligne–Mumford stacks (spectral or ordinary) admit affine
étale covers. In practical terms, this means the étale site of M1,1 (which consists of étale
maps into M1,1) can be computed as the colimit over the affine étale site of M1,1. For
M1,1, this allowed us to compute

TMF := Γ(M1,1,Otop) ∼= limOtop(SpétA → M1,1).

Our next goal is to construct a sheaf Otop

M1,1
of E∞-ring spectra on M1,1, after which we

will define

Tmf := Γ(M1,1,Otop

M1,1
).

To simplify the notation, I’ll write Otop
:= Otop

M1,1
. The goal for the rest of the day is

to give a little more detail about how Otop
is constructed. The procedure is the same

as the one used to construct Otop → M1,1, the details of which we omitted last time.
I’ll be following Mark Behrens’s fantastic notes, where the technical details are laid
out very carefully: https://math.mit.edu/~mbehrens/papers/buildTMF.pdf. These
notes make an excellent companion to Rezk’s notes on viewingM1,1 orM1,1 as a spectral
DM stack (link in Lecture 21).

There are three essential tricks to constructing Otop
:

(i) We need to show that it suffices to define Otop
on affine étale opens, much as we

computed global sections as a colimit over affine étale opens.

https://math.mit.edu/~mbehrens/papers/buildTMF.pdf
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• Given any spectral DM stack X , the affine étale cover i : Xaff,ét → Xét induces
an adjoint pair of functors on the categories of presheaves (of E∞-ring spectra):

i∗ : PreShv(Xaff,ét) ⇆ PreShv(Xét) : i∗.

Here, i∗ is precomposition by i, and i∗ is the right Kan extension. This adjoint
pair gives a Quillen equivalence of these two presheaf categories, which allows
us to construct presheaves on Xét by constructing presheaves on Xaff,ét and

applying i∗. That is, it will suffice to define Otop
(U) functorially for all affine

étale opens U .

(ii) We need to define Otop
rationally and after completing at each prime p. We then

construct Otop
from an arithmetic fracture square

Otop ∏
p O

top

p

Otop

Q

(∏
pO

top

p

)
Q
.

• The sheaf Otop

Q is easy to construct. Given an open affine f : SpecA → M1,1,

we can define an evenly graded ring A2t := Γ(f ∗ω⊗t). Then Otop

Q (SpecA →
M1,1) = HA∗, where H(−) denotes the Eilenberg–Mac Lane spectrum. Defin-

ing the map Otop → Otop

Q is more involved, but it only relies on making various
computations in rational homotopy theory (which is worlds nicer than homo-
topy theory with potential torsion).

(iii) In order to define Otop

p , we have to work K(1)-locally, K(2)-locally, and use another
pullback square.

• Here, K(n) denotes the nth Morava K-theory. This is a ring spectrum with
homotopy ring Fp[vn, v

−1
n ], where |vn| = 2(pn − 1). These play an important

role in chromatic homotopy theory, where spectra are filtered out according
to chromatic height. If you’ve never seen this before, the quick image you
should have in your head is that ordinary cohomology is a height 0 spectrum,
and K-theory is a height 1 spectrum. TMF will turn out to be a height 2
spectrum.

Remark 2.1. For both Otop

Q and theK(n)-localizations of Otop

p , the actual constructions
involve working with formal groups, Lubin–Tate theory, and the Morava stabilizer group.
This is really where the meat of Goerss–Hopkins–Miller’s theorem lies, but we won’t have
time to get into these details.

All of this is summarized nicely by Figure 1 in Behrens’s notes. This figure was generated
by Aaron Mazel-Gee, who also has great notes on constructing tmf https://etale.
site/writing/tmf-seminar-talk.pdf.

https://etale.site/writing/tmf-seminar-talk.pdf
https://etale.site/writing/tmf-seminar-talk.pdf
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To make sense of this diagram, I need to tell you what the various stacks mean.

• (M1,1)Q := M1,1 ×SpecZ SpecQ.

• (M1,1)p is the p-completion of M1,1, i.e. the limit limn(|(M1,1)Fp |,O/pnO).

• Mord

1,1 and Mss

1,1 refer to ordinary and supersingular elliptic curves, respectively.

An elliptic curve E → Spec k in characteristic p is called supersingular if E[pn](k)
is the trivial group for all n. If E[pn](k) ∼= Z/pnZ, E is said to be ordinary. Here,
E[pn] refers to the kernel of multiplication by pn on the group of points.

Next time: tmf and π∗tmf
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