LECTURE 22: CONSTRUCTING TMF (CONTINUED)

STEPHEN MCKEAN

Last time, we described how to construct TMF as global sections of a sheaf of E -ring
spectra:

TMF == D(M,,,0%) = lim — O"P(Spét A — M),

Since O™P is constructed so that O™P(Spét A — M) is the elliptic spectrum de-
termined by the elliptic curve classified by Spét A — M, ;, we find that TMF is the
universal elliptic spectrum. But this was just one of our goals. The other goal was to
lift the Witten genus Q58 — MF, to the level of spectra. For this purpose, TMF is
insufficient. Today, we’ll work towards the desired target spectrum for lifting the Witten
genus.

1. COMPACTIFICATION OF M,

Over a field k, the j-invariant defines a morphism
j : (Ml,l)k — Ai

The scheme A} is a coarse moduli space for My 1 (this means that M, ; maps uniquely
to A}, and any map from M ; to another scheme factors through A}). Tt is evident that
A} is not compact, and P} gives a natural compactification of A}.

We’d like to construct a stack MLI D M, such that extending the j-invariant to IP’,lC
gives us a coarse moduli space

]: (ﬂ171)k — ]P)i
One can compute the j-invariant as 1728%, where A is the discriminant of the defining
equation of our elliptic curve. So whatever the points of M;; — M, ; are, they should
have j € {oo} = P}, — A}, which corresponds to A = 0. In particular, M;; — My
should consist of singular pointed cubic curves to which elliptic curves degenerate.

It turns out that we only need to add nodal cubic curves (where the base point is distinct
from the node) to construct M ;.

Exercise 1.1. Prove that over a field k, any two nodal cubic curve with base points in
the smooth loci are isomorphic. (Hint: show that normalization takes such a curve to Py,
with 3 marked rational points. Then show that P! marked by {pi, ps, p3} is isomorphic
to P} marked by {0,1,00}.)

Recall that M;; was constructed as the category of elliptic curves over a base scheme,
together with a forgetful functor that just returns the base scheme. We can extend this

category to include nodal cubic curves. Over an arbitrary scheme, a nodal cubic curve
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should be a degree 3 curve C' — S with an ordinary double point, together with a section
e : S — (' that does not meet the singular locus of C'. You have to do a little work to
make sense of morphisms to and from nodal cubic curves, as well as proving that this
enlarged category is indeed a stack.

This is known as the Deligne—Mumford compactification Mm of M ;. Here, compacti-
fication refers to the fact that | M | is not a compact topological space, but [M; ;] is.
(The vertical bars mean the points of the stack, i.e. the set of maps from the spectrum
of a field into the stack, endowed with a uniquely defined but technically involved topol-
ogy.) Thinking about compactifying the coarse moduli space should give you a pretty
good image of what’s going on here.

Remark 1.2. In the grand scheme of things, we didn’t have to work too hard to com-
pactify M, ;. Deligne-Mumford compactification and Deligne-Mumford stacks get their
name from Deligne and Mumford’s work on compactifying M, ,, in general. This is a
much harder prospect, as well as a beautiful piece of math touching algebraic geometry,
complex geometry, low-dimensional topology, and dynamics.

2. CONSTRUCTING (O%°P
M1

As with M, 1, we can treat le as a spectral Deligne-Mumford stack. Last time, we
used the crucial fact that Deligne-Mumford stacks (spectral or ordinary) admit affine
étale covers. In practical terms, this means the étale site of Ml,l (which consists of étale
maps into MLI) can be computed as the colimit over the affine étale site of Ml,l. For
M, 1, this allowed us to compute

TMF := T'(Mj1, O'P) = lim O™P(Spét A — M ;).

Our next goal is to construct a sheaf O%I)l ) of E-ring spectra on M ;, after which we
will define 7

Tmf := I'(My, O%’M).

To simplify the notation, I'll write 0" = (9%31 - The goal for the rest of the day is

to give a little more detail about how O"" is constructed. The procedure is the same
as the one used to construct 0P — M, ,, the details of which we omitted last time.
I'll be following Mark Behrens’s fantastic notes, where the technical details are laid
out very carefully: https://math.mit.edu/~mbehrens/papers/buildTMF.pdf. These
notes make an excellent companion to Rezk’s notes on viewing M, ; or Ml,l as a spectral
DM stack (link in Lecture 21).

There are three essential tricks to constructing o"".

(i) We need to show that it suffices to define 0" on affine étale opens, much as we
computed global sections as a colimit over affine étale opens.


https://math.mit.edu/~mbehrens/papers/buildTMF.pdf
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e Given any spectral DM stack X, the affine étale cover i : Xyq ¢ — Xy induces
an adjoint pair of functors on the categories of presheaves (of E.-ring spectra):

i* - PreShv(Xaget) S PreShv(Xy) : iy

Here, ¢* is precomposition by ¢, and 1, is the right Kan extension. This adjoint
pair gives a Quillen equivalence of these two presheaf categories, which allows
us to construct presheaves on Xy by constructing presheaves on X4 ¢ and

applying ¢*. That is, it will suffice to define 5t0p(U ) functorially for all affine
étale opens U.

(ii)) We need to define o rationally and after completing at each prime p. We then
construct O'F from an arithmetic fracture square

—top —Atop
0" —— 1,0,

| |

@EP — (Hp @;OP)Q :

e The sheaf @gp is easy to construct. Given an open affine f : Spec A — Ml,l,

we can define an evenly graded ring As; := T'(f*w®'). Then 5gp(8pecA —
M) = HA,, where H(—) denotes the Eilenberg-Mac Lane spectrum. Defin-

ing the map o @gp is more involved, but it only relies on making various
computations in rational homotopy theory (which is worlds nicer than homo-
topy theory with potential torsion).

(iii) In order to define 6;Op, we have to work K (1)-locally, K (2)-locally, and use another
pullback square.

e Here, K(n) denotes the n'® Morava K-theory. This is a ring spectrum with
homotopy ring F,[v,, v, '], where |v,| = 2(p™ — 1). These play an important
role in chromatic homotopy theory, where spectra are filtered out according
to chromatic height. If you’ve never seen this before, the quick image you
should have in your head is that ordinary cohomology is a height 0 spectrum,
and K-theory is a height 1 spectrum. TMF will turn out to be a height 2
spectrum.

Remark 2.1. For both 65;} and the K (n)-localizations of @;Op, the actual constructions
involve working with formal groups, Lubin—Tate theory, and the Morava stabilizer group.
This is really where the meat of Goerss—Hopkins—Miller’s theorem lies, but we won’t have
time to get into these details.

All of this is summarized nicely by Figure 1 in Behrens’s notes. This figure was generated
by Aaron Mazel-Gee, who also has great notes on constructing tmf https://etale.
site/writing/tmf-seminar-talk.pdf.
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To make sense of this diagram, I need to tell you what the various stacks mean.
o (ml,l)(@ = Ml,l X SpecZ Spec Q.
e (M), is the p-completion of My 1, i.e. the limit lim,(|(My,)s,|, O/p"O).
° ﬂ?rf and Misl refer to ordinary and supersingular elliptic curves, respectively.
An elliptic curve E — Spec k in characteristic p is called supersingular if E[p"](k)

is the trivial group for all n. If E[p"|(k) & Z/p"Z, E is said to be ordinary. Here,
E[p™] refers to the kernel of multiplication by p™ on the group of points.

Next time: tmf and 7,.tmf
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