
LECTURE 26: STRING ORIENTATION (PART 3) AND FINAL
REMARKS

STEPHEN MCKEAN

Today, we reach the bittersweet end of our journey. I’ve learned a lot during this se-
mester, both from preparing these lectures and from your great questions and insights
in class and in office hours. Thanks for your patience with me, and for making this such
a great experience! Hopefully you’ve learned something from the course as well.

Last time, we learned that the theorem of the cube (along with a lot of other things) im-
plies that multiplicative maps MU⟨6⟩ → E correspond to cubical structures on O(−e) →
G, where G = Spf(E0(CP∞)) and e : π0E → G is the identity element.

As mentioned in class (but forgotten in last time’s notes), G is a 1-dimensional group
scheme. In order to apply the theorem of the cube, we need G to also be proper. A proper
group scheme an abelian variety, and abelian varieties of dimension 1 are elliptic curves.
So cubical structures don’t literally correspond to all multiplicative maps MU⟨6⟩ → E
for arbitrary E, since we only get the necessary trivialization data when E is an elliptic
spectrum. So cubical structures on O(−e) → G correspond to multiplicative maps
MU⟨6⟩ → E when E is an elliptic spectrum with associated elliptic curve G. 1

But this isn’t the end of the story, since we want to understand multiplicative maps
out of MString := MO⟨8⟩. As before, if E is an elliptic spectrum, we get a canonical
multiplicative map MO⟨8⟩ → E. Moreover, these multiplicative maps are functorial in
E, so that if f : E → E ′ is a map of elliptic spectra, then

(0.1)

MO⟨8⟩

E E ′
f

commutes up to homotopy. We’ve actually missed some spectra that admit a multi-
plicative map from MO⟨8⟩: those whose formal group law is given by that of a nodal
elliptic curve (such as KO). But if we include these as well, then the homotopy limit of
diagrams (0.1) gives us a map

MO⟨8⟩ → Tmf.

Thom spectra are connective, so composing with the map Tmf → tmf doesn’t really lose
any information, and we get something looking like the string orientation

MO⟨8⟩ → tmf.

1Really, G is the formal neighborhood of an elliptic curve at the identity, but this is all we need for an
elliptic spectrum anyway.
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There are a couple questions that we need to address. First, since diagram 0.1 only
commutes up to homotopy, we haven’t gotten an honest map of spectra MString → tmf.
Second, we haven’t said anything about E∞ structure.

This approach to the string orientation has actually never been completed, as far as I
know. This was the original idea, and it led us to the right definition of Tmf as a limit
over elliptic cohomology theories. But to actually construct the string orientation at the
end of the day, you have to work more directly. (You still use all of the hard work about
MU⟨6⟩, cubical structures, and the theorem of the cube. You just don’t get to use the
limit of the maps MO⟨8⟩ → E, which would be a harmonious way to construct the string
orientation in light of the definition of Tmf.)

Remark 0.1. The passage from MU⟨6⟩ to MO⟨8⟩ is actually pretty subtle — it is
treated thoroughly in the unpublished paper “Multiplicative orientations of KO-theory
and of the spectrum of topological modular forms,” by Ando, Hopkins, and Rezk. I
don’t think this paper is even on the arXiv, but there’s a copy on Rezk’s website:
https://rezk.web.illinois.edu/koandtmf.pdf.

In this paper, the space of E∞-ring maps MO⟨8⟩ → X is denoted by A(gl1X). Rather
than trying to work with a limit of A(gl1E) over all elliptic spectra E, the authors
work with A(gl1tmf). The study A(gl1tmf) by working rationally, completing at various
primes, and working K(1) or K(2) locally, since tmf becomes much simpler in these
settings. They then prove that π0A(gl1tmf) is non-empty by verifying that the Eisenstein
series satisfy various properties (Section 12), and checking that the E∞-orientations
MString → tmf associated to the Eisenstein series indeed lift the Witten genus (Section
15).

1. What now?

Elliptic cohomology and the Witten genus were hot topics during the late 1900s. Around
the turn of the millennium, constructing and charting tmf was all the rage. To close
the class, I want to gesture at a couple places (outside of chromatic homotopy) where
topological modular forms are currently used in research.

• The field in which tmf plays the biggest role is quantum field theory. An im-
portant and difficult question that goes way back to the early days of elliptic
cohomology is the following: what does elliptic cohomology mean geometrically?
When you first learn singular cohomology or K-theory, you have explicit geomet-
ric meaning behind your cocycles. But the cocycles underlying elliptic cohomol-
ogy have remained mysterious.

Because tmf is the universal elliptic cohomology theory, this problem extends
to understanding tmf cocycles. The Stolz–Teichner conjecture is a proposal that
tmf cocycles correspond to certain types of 2-dimensional quantum fielld theories.
(There are vast and deep generalizations of this conjecture, involving equivari-
ance, higher heights, and so on.) The flow of information has gone both ways
in this program, but one key dynamic is that tmf is a well-defined mathematical
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object, whereas quantum field theory still has some of the blurriness of defini-
tions in physics. The Stolz–Teichner conjecture can be used as a tool to hone
candidate definitions in physics by following mathematical definitions in around
tmf.

For example, recent work of Tachikawa–Yamashita use the Stolz–Teichner con-
jectures and certain calculations in tmf to make predictions about quantum field
theories, which they then verify directly on the physical side of the conjecture.

• In her thesis, Morgan Opie uses tmf(3) to classify rank 3 vector bundles on CP5.
Classifying vector bundles on projective spaces is a deceptively difficult prob-
lem. While Chern classes are good at distinguishing between vector bundles in
low ranks, they become insufficient in higher ranks. Morgan constructs tmf(3)-
characteristic classes, which give an extra level (or height) of structure for dis-
tinguishing bundles. I highly recommend reading her paper if you like vector
bundles: https://arxiv.org/pdf/2301.04313.pdf.

• A great achievement of homotopy theory applied to differential topology is the
(non)-uniqueness of smooth structures on spheres. Hill–Hopkins–Ravanel’s solu-
tion of the Kervaire invariant one problem, together with older work of Kervaire–
Milnor, implies that Sn can have a unique smooth structure only if n = 1, 3,
5, 13, 29, 61, and 125. It has long been known that there is a unique smooth
structure for n = 1, 3, 5, and not a unique structure for 13 and 29. Almost 10
years ago, Wang–Xu showed that there is a unique smooth structure for 61 (via
extensive Adams spectral sequence calculations involving new techniques), and
that there is not a unique smooth structure for 125 by using the Hurewicz (i.e.
π∗S → π∗tmf) image in tmf. Since π∗tmf is more computable than π∗S, Wang–
Xu were able to make the necessary calculations in a range far beyond the limits
of what we knew about π∗S at the time. (I believe we currently have a good
understanding of π∗S for ∗ ≤ 90.)

Next time: keep me posted on all the exciting things you do in the future!
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