
LECTURE 3: ELLIPTIC FUNCTIONS AND COBORDISM

STEPHEN MCKEAN

The goal today is to do some geometry and homotopy theory. But first, we need to wrap
up our discussion about elliptic functions.

1. Elliptic functions

Last week, I mentioned that sn can be extended to a meromorphic function with two
periods. The periodicity meshes well with the claim that elliptic integrals should be
generalized inverse trig functions, since you would expect some sort of periodic behavior
in their inverses (which we view as generalized trig functions).

Just as with sn, all of the Jacobi theta functions can be extended to the complex plane.
As functions of a complex variable, the Jacobi theta functions are meromorphic and are
periodic with respect to two R-linearly independent periods ω1, ω2 ∈ C. This inspires
the following definitions:

Definition 1.1. A period of a complex function f is a number ω ∈ C such that f(z+ω) =
f(z) for all z ∈ C. A function is doubly periodic if there exist ω1, ω2 ∈ C with ω2/ω1 ̸∈ R
such that ω1 and ω2 are each periods of f . The pair (ω1, ω2) is called a fundamental pair
of periods if every period of f is of the form mω1 + nω2 for some integers m and n.

Question 1.2. For the sake of visualization, you should think of ω1 and ω2 as linearly
independent vectors in R2. Sketch a picture of a pair of periods of a doubly periodic
function. What does a fundamental pair of periods look like?

Definition 1.3. A period domain of a doubly periodic function f is a parallelogram
with vertices {0, ω1, ω2, ω1 + ω2}, where (ω1, ω2) is a fundamental pair of periods.

Definition 1.4. A function f is called elliptic if it is doubly periodic and meromorphic.1

Lemma 1.5. If f and g are elliptic functions with the same double periodicity, then so
are f ′, f + g, f · g, and f

g
.

Proof. Each of these new functions is meromorphic (the last three cases are from standard
differentiation rules; the first is from the fact that holomorphic functions are infinitely
differentiable, and differentiation can only take poles to poles). Double periodicity is
straightforward to check (try writing it out if you’re confused). □

Theorem 1.6. A non-constant elliptic function has a fundamental pair of periods.

1Recall that a function is meromorphic if its only singularities in C are poles.
1
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Proof. Among all periods of f , there must be a smallest one (i.e. smallest |ω|). Indeed,
otherwise f would have arbitrarily small non-zero periods and would thus be constant.
Among all periods with smallest modulus |ω|, pick one and call it ω1. Since f has two
non-colinear periods, find a period of smallest modulus in C−R{ω1} and call it ω2. Now
by construction, there are no other periods in the triangle with vertices {0, ω1, ω2}, so
we have our fundamental pair of periods. □

Remark 1.7. Every Jacobi theta function is elliptic. These come from inverting the
incomplete elliptic integrals of the first, second, and third kinds, so it is tempting to
speculate that the inverse of every elliptic integral is an elliptic function. However, this
is not true.

Exercise 1.8. Find some examples of elliptic integrals whose inverses are not an elliptic
functions. Can you find examples where the inverse is not doubly periodic? What about
not meromorphic? Is it true that the inverse of an elliptic function (restricted to R) is
always an elliptic integral?

Since elliptic functions are meromorphic, they have an isolated set of singularities (if
any at all). If one has any singularities, you must have infinitely many due to double
periodicity. Sometimes these poles land on the boundary of a fundamental domain of the
elliptic function. It is often convenient to work in regions where there are no singularities
on the boundary. This leads us to the following definition:

Definition 1.9. A cell of an elliptic function f is a translation D + t (for some t ∈ C)
of a fundamental domain D such that f has no poles on ∂(D + t).

Question 1.10. Why does such a cell always exist?

Exercise 1.11. Prove that an elliptic function is either constant, has at least two poles
in each cell, or has at least one double pole in each cell. Also prove that if an elliptic
function f has no zeros in some cell, then f is constant.

The proof of the following lemma will give you a hint for Exercise 1.11.

Lemma 1.12. The number of zeros of an elliptic function in any cell is equal to the
number of poles, each counted with multiplicity.

Proof. Let f be an elliptic function. Let C be a cell. The integral

1

2πi

∮
∂C

f ′(z)

f(z)
dz

computes the difference between the number of zeros and the number of poles in C. But
f ′ is an elliptic function with the same fundamental domain as f , so g := f ′/f is an
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elliptic function with the same fundamental domain as well. Now

1

2πi

∮
∂C

g(z) dz =
1

2πi

(∫ t+ω1

t

+

∫ t+ω1+ω2

t+ω1

+

∫ t+ω2

t+ω1+ω2

+

∫ t

t+ω2

)
g(z) dz

=
1

2πi

∫ t+ω1

t

(g(z)− g(z + ω2)) dz −
1

2πi

∫ t+ω2

t

(g(z)− g(z + ω1)) dz.

Double periodicity implies g(z)− g(z + ω1) = g(z)− g(z + ω2) = 0, as desired. □

Remark 1.13. Just as elliptic integrals were an inevitable part of scientific history, so
too were elliptic functions. In a few weeks, we’ll see how elliptic functions very naturally
lead us to modular forms and elliptic curves, two concepts at the heart of much of modern
number theory. As you’ve seen, our story has been very analytic so far. It is extremely
remarkable that algebra will play such a large role in this as well. More on this later.

2. Cobordism

Let’s dig into cobordism. I spoke about this very informally on the first day of class. I
want to do this much more rigorously today. We’ll mostly focus on oriented cobordism
today, where we can tell a very geometric story. We’ll come back to other types of
cobordism another time (whether in the next week or after about a month).

Definition 2.1. Until stated otherwise, a manifold is a smooth compact manifold, pos-
sibly with boundary. An orientation is a maximal atlas {(U,φ)} such that the Jacobian
of each transition function is positive: D(φ ◦ ψ−1) > 0.

Another way to think of this is a nowhere-vanishing n-form ω such that

ωp(
∂

∂x1
|p, . . . ,

∂

∂xn
|p) > 0

for all p, where { ∂
∂x1
, . . . , ∂

∂xn
} are induced by the atlas.

When studying cobordism with some extra structure (like oriented cobordism, complex
cobordism, etc.), we need a way for the extra structure on a manifold to induce extra
structure on its boundary.

Definition 2.2. An orientation on a manifold with boundary induces an orientation
on the boundary as follows. The charts at the boundary are maps of the form U →
Rn−1 × R≥0 that reduce to charts int(U) → Rn on the interior. When we restrict these
to the boundary, we instead get charts ∂U → Rn−1, and these together will form an
oriented atlas of ∂M .

Visually, you can think of this as choosing basis vectors v1, . . . , vn−1 of Tp∂M (for each
p ∈ ∂M) such that v1, . . . , vn−1, vin is a positively oriented basis of TpM . Here, vin is the
inward pointing normal vector.

Now that we know how an orientation on a manifold W induces an orientation on its
boundary ∂W , we can define oriented cobordism.
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Definition 2.3. An oriented cobordism between two oriented n-manifolds M1 and M2

is an oriented (n + 1)-manifold W such that ∂W = M1 ⊔ −M2, where −M2 indicates
that we have reversed the orientation on M2.

Question 2.4. This is not really a question but not quite an exercise: try drawing some
oriented cobordisms.

Recall that cobordism is supposed to be a particularly nice equivalence relation on the
set of all manifolds. If this is true, we better be able to show that oriented cobordism is
an equivalence relation.

Lemma 2.5. Oriented cobordism is an equivalence relation.

Proof. First, we need to show that any oriented manifold M is cobordant to itself. We
can build an explicit manifold to realize this oriented cobordism: M × [0, 1].

Second, we need to show that if M1 is cobordant to M2, then M2 is cobordant to M1.
If W is an oriented cobordism from M1 to M2 (so ∂W = M1 ⊔ −M2), then note that
∂(−W ) = −M1 ⊔M2. Thus −W is an oriented cobordism from M2 to M1.

Finally, we need to show that if M1 is cobordant to M2 (via W ), and if M2 is cobordant
to M3 (via V ), then we can glue W and V along the boundary components −M2 and
M2 to get a new manifold Y . The key to making this work is having the orientation
pointing out of W and into V . By construction, ∂Y =M1 ⊔ −M3. □

Remark 2.6. Note that if ∂M ̸= ∅, thenM cannot be cobordant to any other manifold.
Indeed, such a cobordism would be a manifold W with M a component of ∂W , so ∂M
would be a component of ∂∂W . Now what do you know about the boundary of a
boundary?

After quotienting the set of all manifolds without boundary by this equivalence relation,
we get a set of oriented cobordism classes. The next step is to give this set the structure
of a group.

Lemma 2.7. Disjoint union turns the set of oriented cobordism classes into a group.

Proof. The group identity is given by ∅, which we think of as a manifold of any dimen-
sion. The group inverse of M is −M : we get an oriented cobordism from M ⊔−M to ∅
by bending the cylinder M × [0, 1]. This cylinder has boundary M ⊔−M , which is how
we saw that oriented cobordism is reflexive just a moment ago. But if we instead think
of this boundary as (M ⊔ −M) ⊔ (∅), we now see that M ⊔ −M is cobordant to ∅.

We’re not done yet! We also have to check that this group operation is well-defined. If
M1 is cobordant to M2 via W , and if M ′

1 is cobordant to M
′
2 via W

′, then we need to see
that M1 ⊔M ′

1 is cobordant to M2 ⊔M ′
2. The desired cobordism is given by W ⊔W ′. □
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Recall also that we can put a ring structure on ΩSO
∗ , as long as we do not restrict to any

one dimension.

Lemma 2.8. Cartesian product turns the group of oriented cobordism classes into a
graded ring.

Proof. To see that the structure is graded, note that dim(M1×M2) = dim(M1)·dim(M2).
To see that this product is well-defined in cobordism, we need to show that if M1 is
cobordant to M2 and M ′

1 is cobordant to M ′
2, then M1 ×M ′

1 is cobordant to M2 ×M ′
2.

Finally, we need to check the axioms of the ring structure. We leave these last two steps
as an exercise. □

Exercise 2.9. Check that oriented cobordism with Cartesian product and disjoint union
satisfies the axioms of a ring structure, and that the product is well-defined.

2.1. Low-dimensional examples. Let’s compute the group ΩSO
n by hand for 0 ≤ n ≤

2. This will boil down to the fact that we can classify all oriented manifolds (without
boundary) in these dimensions.

First, let’s look at ΩSO
0 . A 0-dimensional manifold is a finite union of points. An

orientation on a point is just an assignment of ±1; denote a positive point by pt+, and
a negative point by pt−. We have cobordisms from pt+ to pt− and pt− to pt+ given by
[0, 1] and −[0, 1], respectively. In particular, −pt+ = pt−.

Proposition 2.10. The function f : Z → ΩSO
0 given by f(n) =

⊔
n pt+ is a group

isomorphism.

Proof. We just need to show that any oriented 0-manifold is cobordant to ∅,
⊔

n pt+, or⊔
n pt− for some n. It will then follow from the previous paragraph that f is a bijective

group homomorphism, as desired.

In general, a 0-dimensional oriented manifold takes the form
⊔

a pt+ ⊔
⊔

b pt−. If a ≥ b,
then we can pair off positive and negative points (since −pt+ = pt−) to obtain an
oriented cobordism to

⊔
a−b pt+. If a ≤ b, then we instead get a cobordism to

⊔
b−a pt−.

In any case, we find that any 0-dimensional oriented manifold is cobordant to ∅ or a
collection of points with the same orientation. □

Example 2.11. Every 1-dimensional manifold (without boundary) is a finite disjoint
union of circles, each with an orientation. Note that S1 bounds the oriented disk D2, so
every circle is cobordant to ∅. Thus each component of any 1-dimensional manifold is
cobordant to ∅, so ΩSO

1 = 0.

Example 2.12. By the classification of orientable surfaces, connected orientable surfaces
(without boundary) are determined by their genus. The genus 0 surface is S2, which
bounds the oriented 3-ball D3. The genus 1 surface is the torus T 2, which bounds the
oriented handlebody D2 × S1. The genus g surface Σg is the connect sum #gT

2 and
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bounds the oriented handlebody #g(D
2 × T 1). It follows that every orientable surface

is a disjoint union of components that are cobordant to ∅, so ΩSO
2 = 0.

Remark 2.13. One can also prove that ΩSO
3 = 0 in a fairly direct way. This would

require a bit of a diversion into handlebody decompositions of 3-folds, as well as some
surgery theory. We’ll have to skip this for brevity’s sake, but I can round up some
references if anybody is interested.

Remark 2.14. Next time, we’ll use an analytic construction called the signature of a
4n-manifold to prove that ΩSO

4 is not trivial. This will be our natural segue into genera.
Today, we’ll see a homotopical proof of this fact (and much more).

2.2. Thom spaces, Thom spectra, and the Pontryagin–Thom construction.
On the first day of class, I mentioned that ΩSO

n ⊗Q ∼= Q[CP2,CP4, . . .]. Based on what
we’ve done so far, you should be utterly amazed by this sort of theorem. How can one
possibly get at all of this topology in every dimension? What would a proof even look
like?

Well, this is the perfect opportunity to introduce the magic of René Thom. The motto
is:

Turn a question about the geometry or topology of an object X into a
question about the homotopy theory of an object Y .

Remark 2.15. This motto has been shockingly effective over the last 70 years. In recent
years, arithmetic questions have also been successfully attacked using homotopy theory.
A reason for all of this is that homotopy theory is an excellent organizational tool, and
there are lots of powerful computational tools present in the subject.

As some basic language, we need to introduce the notion of a spectrum. First, recall the
definition of a loop space:

Definition 2.16. A pointed space is a pair (X, x), where X is a topological space and
x ∈ X is a chosen base point. The loop space ΩxX (or just ΩX) of (X, x) is the
topological space of continuous maps [(S1, 0), (X, x)], where 0 ∈ S1 is a chosen base
point. Here, we topologize the set [(S1, 0), (X, x)] via the compact-open topology.

Now we can introduce spectra. We’ll do these in more detail later, so take this as a first
approximation of a richer story.

Definition 2.17. A spectrum E is a sequence of pointed topological spaces {En}n≥0,
together with structure maps en : En → ΩEn+1.



LECTURE 3: ELLIPTIC FUNCTIONS AND COBORDISM 7

A morphism of spectra φ : E → F is a sequence of maps of pointed topological spaces
φn : En → Fn such that the following diagrams all commute:

En Fn

ΩEn+1 ΩFn+1.

φn

en fn

Ωφn+1

Remark 2.18. Recall that a map of topological spaces is called a weak equivalence if
it induces an isomorphism on homotopy groups. We have the same notion for spectra,
where we replace homotopy groups with stable homotopy groups

πs
nE := colim

k→∞
πkEk+n.

Remark 2.19. What is going on here? There’s a theorem known as Brown representabil-
ity, which very roughly says that cohomology should be representable by a sequence of
spaces. That is, there should be spaces {En} such that Hn(X) = [X,En]. But coho-
mology isn’t just a bucket of groups — there should be some connection between Hn

and Hn+1. Spectra naturally come out of this story, and the structure maps tie all the
different dimensions together. We’ll talk about this more rigorously later.

Now that I’ve given you a definition, we need to see an example. I anticipate that we’ll be
out of time by this point (if not earlier), so I’ll just give you a preview. Associated to the
classifying space BG(n) of some Lie group G(n), we will build a topological space known
as the Thom space. This will be the one-point compactification Th(ξn) := ξn ∪ {∞} of
the universal bundle ξn → BG(n). We will see that this construction comes with very
natural structure maps Th(ξn) → ΩTh(ξn+1), so that the Thom spaces fit together
to form the Thom spectrum MG. Finally, we will talk about the Pontryagin–Thom
isomorphism, which relates the homotopy groups of the spectrum MG to the cobordism
ring ΩG

∗ .

Next time: More cobordism, then genera.

Daily exercises: In each lecture, I will try to give at least a couple exercises for you to
think about. These may range from trivial to impossible. The point is to encourage you
to think about the material outside of lecture time. I’ll always put a hyperlinked list of
exercises at the end of the notes to make them easy to find.

• Exercise 1.8: explore the difference between elliptic functions and inverses of
elliptic integrals.

• Exercise 1.11: prove that elliptic functions are either constant, have at least two
simple poles in each cell, or have at least one double pole in each cell.

• Exercise 2.9: check the ring structure on ΩSO
∗ .
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