
LECTURE 4: COBORDISM AND GENERA

STEPHEN MCKEAN

Last time, we computed ΩSO
0

∼= Z and ΩSO
1 = ΩSO

2 = 0 by hand. I also told you
that ΩSO

3 = 0, but we didn’t prove this. Each of these facts uses explicit geometric
input: in dimensions 0, 1, and 2, we completely understand the set of manifolds up to
homeomorphism, from which we can deduce the set (and even group) of manifolds up
to oriented cobordism. In dimension 3, we apply something called surgery theory to
construct oriented cobordisms from any 3-manifold to S3.

Clearly, we can’t keep playing this game forever. In each new dimension, it seems like
you need a new geometric idea. You can’t just “induct on dimension”. So how can
we possibly completely characterize ΩSO

∗ ? Later in the lecture, we’ll see how homotopy
theory lets us characterize ΩSO

∗ ⊗Q in a dramatically beautiful way. Wall combined this
understanding of ΩSO

∗ ⊗Q with more geometric input to fully characterize ΩSO
∗ [Wal60],

although we won’t have time for that story in this class.

But before we get to the homotopy theory, we’ll do just a little more geometry to prove
that ΩSO

4 is not trivial.

1. Signature of 4d-manifolds

On the first day of class, I told you that genera were important and useful. I’ll prove it
by using a genus to show that ΩSO

4 is not trivial. In other words, I will use some function
(which is analytic in nature) to imply a non-obvious fact about 4-dimensional topology.

Remark 1.1. We are about to use the cup product define a bilinear form on cohomology.
This is best defined algebraically (in terms of singular simplices), but for our purposes
it suffices to recall the analytic formulation. Given a (de Rham cohomology class of a)
p-form [α] ∈ Hp

dR(X;R) and a q-form [β] ∈ Hq
dR(X;R), the cup product is the class of

the form [α] ⌣ [β] := [α ∧ β] ∈ Hp+q
dR (X;R).1

Whenever you hear “cohomology of compact manifolds”, you should think “Poincaré
duality!” Here’s a corollary of Poincaré duality in even dimensions:

Theorem 1.2. Let M be a compact, connected 2n-manifold without boundary. Then the
composition of the cup product ⌣: Hn(M ;R)×Hn(M ;R) → H2n(M ;R) with the duality
isomorphism H2n(M ;R) ∼= R induces a non-degenerate bilinear form

β : Hn(M ;R)×Hn(M ;R) → R.
Moreover, β is symmetric if n is even and skew-symmetric if n is odd.

1The LATEX for ⌣ is \smile.
1
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Exercise 1.3. Prove the claim about (skew-)symmetry in Theorem 1.2.

When n = 2d is even (so M is a 4d-manifold), β is a symmetric, non-degenerate bilinear
form over R. These are classified by two invariants: rank and signature.

Definition 1.4. Let V be a real vector space. Let β : V ×V → R be a symmetric, non-
degenerate bilinear form. The rank of β is defined as rank(β) := dim(V ). The signature
of β is defined as sign(β) := n+ − n−, where n+ is the number of positive eigenvalues
and n− is the number of negative eigenvalues.

Definition 1.5. Let M be a compact, connected 4d-manifold without boundary. The
signature of M is defined to be

σ(M) := sign(β) ∈ Z,
where β is the bilinear form determined by the cup product on middle cohomology.

We also define σ(M1 ⊔ M2) := σ(M1) + σ(M2), which extends the definition to non-
connected manifolds.

Remark 1.6. You might be unsatisfied with defining σ(M1 ⊔M2) as the sum σ(M1) +
σ(M2), rather than proving this as a theorem.

Suppose M1 and M2 are connected. The cup product pairing gives us a map H2n(M1 ⊔
M2)×H2n(M1 ⊔M2) → H4n(M1 ⊔M2), but now it looks like H4n(M1 ⊔M2) ∼= R× R.
However, we should use the intersection pairing with [M1 ⊔M2] = [M1]⊕ [M2], so that

proj1(β) + proj2(β) : H
2n(M1 ⊔M2)×H2n(M1 ⊔M2)

β−→ R× R +−→ R
is the desired symmetric, non-degenerate bilinear form. One can then prove that sign(proj1(β)+
proj2(β)) = σ(M1) + σ(M2), as desired.

The previous definition implies that if σ(M1) = σ(M2) whenever M1 and M2 are cobor-
dant, then σ : ΩSO

4d → Z will be a group homomorphism. We’ll prove it in dimension
4:

Lemma 1.7. If M1 and M2 are oriented 4-manifolds that are cobordant, then σ(M1) =
σ(M2).

Proof. LetW be a cobordism fromM1 toM2. Thanks to the group structure on ΩSO
n , this

will follow from proving that σ(M1 ⊔ −M2) = 0. By the additivity of σ over connected
components, we may also assume that M1, M2, and W are all connected.

Let i : ∂W ↪→ W . The key is relative Poincaré duality, which gives us a commutative
diagram with exact rows:

· · · H2(W ;R) H2(∂W ;R) H3(W,∂W ;R) · · ·

· · · H3(W,∂W ;R) H2(∂W ;R) H2(W ;R) · · ·

i∗

∼=

δ∗

∼= ∼=

δ∗ i∗
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Next, we will show that β vanishes on i∗(H2(W ;R)). Let [∂W ] and [W,∂W ] denote the
fundamental class and relative fundamental class, respectively. Then

β(i∗a, i∗b) = ⟨i∗a ⌣ i∗b, [∂W ]⟩
= ⟨i∗(a ⌣ b), [∂W ]⟩
= ⟨i∗(a ⌣ b), δ∗[W,∂W ]⟩
= ⟨δ∗i∗(a ⌣ b), [W,∂W ]⟩
= 0.

Here, ⟨−,−⟩ denotes the intersection pairing induced by cap products. The steps here
are naturality of ⌣ under pullbacks, the interaction of relative fundamental classes and
cap products, and exactness (δ∗i∗ = 0).

Next, we will show that dimH2(∂W ;R) = 2 dim i∗(H2(W ;R)). The above diagram
tells us that dimH2(∂W ;R) = dim i∗(H2(W ;R)) + dimker(δ∗)⊥, and that ker(δ∗)⊥ ∼=
ker(i∗)

⊥. Now the universal coefficient theorem gives a diagram

H2(W ;R) H2(∂W ;R)

H2(W ;R) H2(∂W ;R).

i∗

∼= ∼=

i∗

In particular, ker(δ∗)⊥ ∼= ker(i∗)
⊥ ∼= im(i∗).

Now to conclude, we diagonalize β to be a bilinear form on P ⊕N , where P and N are
the positive and negative eigenspaces, respectively. If dim(P ) > dim(N), then dim(P ) ≥
dim i∗(H2(W ;R)) + 1, so P ∩ i∗(H2(W ;R)) must be non-empty. But this contradicts
the vanishing of β on i∗(H2(W ;R)). The same argument holds if dim(P ) < dim(N), so
we conclude that dim(P ) = dim(N) and hence σ(∂W ) = dim(P )− dim(N) = 0. □

Here’s an exercise for you:

Exercise 1.8. Prove that σ(CP2) = 1, and deduce that σ : ΩSO
4 → Z is surjective.

2. Thom spaces, Thom spectra, and the Pontryagin–Thom construction

On the first day of class, I mentioned that ΩSO
n ⊗Q ∼= Q[CP2,CP4, . . .]. Based on what

we’ve done so far, you should be utterly amazed by this sort of theorem. How can one
possibly get at all of this topology in every dimension? What would a proof even look
like?

Well, this is the perfect opportunity to introduce the magic of René Thom. The motto
is:

Turn a question about the geometry or topology of an object X into a
question about the homotopy theory of an object Y .



4 STEPHEN MCKEAN

Remark 2.1. This motto has been shockingly effective over the last 70 years. In recent
years, arithmetic questions have also been successfully attacked using homotopy theory.
A reason for all of this is that homotopy theory is an excellent organizational tool, and
there are lots of powerful computational tools present in the subject.

As some basic language, we need to introduce the notion of a spectrum. First, recall the
definition of a loop space:

Definition 2.2. A pointed space is a pair (X, x), where X is a topological space and
x ∈ X is a chosen base point. The loop space ΩxX (or just ΩX) of (X, x) is the
topological space of continuous maps [(S1, 0), (X, x)], where 0 ∈ S1 is a chosen base
point. Here, we topologize the set [(S1, 0), (X, x)] via the compact-open topology.

Remark 2.3. Looping gives a functor Ω : ho(Top∗) → ho(Top∗). This is actually the
right adjoint in an adjoint pair (Σ,Ω), where Σ is suspension. That is,

[ΣX, Y ]ho(Top∗)
∼= [X,ΩY ]ho(Top∗).

Recall that the smash product of two pointed spaces X and Y is defined as the cofiber
(think “quotient”) X∧Y := (X×Y )/(X∨Y ). Given a pointed space X, the suspension
is defined as ΣX := S1 ∧X.

Often, one sets up spectra in terms of Σ instead of Ω, but loops are a little more intuitively
accessible if you’ve never thought about suspensions before. Anyway, I cannot overstate
how fundamentally important (Σ,Ω) are in homotopy theory.

Exercise 2.4. Prove that [ΣX, Y ]ho(Top∗)
∼= [X,ΩY ]ho(Top∗) as sets.

Now we can introduce spectra. We’ll do these in more detail later, so take this as a first
approximation of a richer story.

Definition 2.5. A spectrum E is a sequence of pointed topological spaces {En}n≥0,
together with structure maps en : En → ΩEn+1.

A morphism of spectra φ : E → F is a sequence of maps of pointed topological spaces
φn : En → Fn such that the following diagrams all commute:

En Fn

ΩEn+1 ΩFn+1.

φn

en fn

Ωφn+1

Remark 2.6. Recall that a map of topological spaces is called a weak equivalence if
it induces an isomorphism on homotopy groups. We have the same notion for spectra,
where we replace homotopy groups with stable homotopy groups

πs
nE := colim

k→∞
πkEk+n.



LECTURE 4: COBORDISM AND GENERA 5

Remark 2.7. What is going on here? There’s a theorem known as Brown representabil-
ity, which very roughly says that cohomology should be representable by a sequence of
spaces. That is, there should be spaces {En} such that Hn(X) = [X,En]. But coho-
mology isn’t just a bucket of groups — there should be some connection between Hn

and Hn+1. Spectra naturally come out of this story, and the structure maps tie all the
different dimensions together. We’ll talk about this more rigorously later.

Now that I’ve given you a definition, we need to see an example. Here’s the preview,
which we’ll go through more carefully in a moment. Associated to the classifying space
BG(n) of some Lie group G(n), we will build a topological space known as the Thom
space. This will be the one-point compactification Th(ξn) := ξn ∪ {∞} of the universal
bundle ξn → BG(n). We will see that this construction comes with very natural structure
maps Th(ξn) → ΩTh(ξn+1), so that the Thom spaces fit together to form the Thom
spectrum MG. Finally, we will talk about the Pontryagin–Thom isomorphism, which
relates the homotopy groups of the spectrum MG to the cobordism ring ΩG

∗ .

2.1. Classifying spaces. If you’ve never seen classifying spaces before, here’s a quick
overview of what they are. When we were talking about spectra, I mentioned Brown
representability, which says that the cohomology of a space X should actually come from
maps into some other space Y . This is a powerful idea, because it turns an algebraic
construction into something more geometric.

Classifying spaces arise from trying to apply this idea to the theory of vector bundles.

Definition 2.8. Let G be a topological group. A principal G-bundle over a topological
space X is a bundle P → X with a G-action ρ : G × P → P such that (proj1, ρ) :
P ×G → P ×X P is an isomorphism.

Definition 2.9. Let G be a topological group. A classifying space of G is a topological
space BG such that there is a natural isomorphism of sets

{principal G-bundles over X}/iso ∼= [X,BG]

for sufficiently nice spaces X.

Remark 2.10. This is sort of an aspirational definition. We want this sort of space to
exist, but why should it? It turns out that classifying spaces of topological groups exist
and are unique up to homotopy. In fact, you can construct them as the delooping of G.
That is, BG can be defined as the space such that ΩBG ≃ G.2

A key player in this story is the universal line bundle ξ → BG. This is how we get our
representability result — given a map f : X → BG, we get a principal G-bundle f ∗ξ on
X. Moreover, every principal G-bundle takes this form.

2In general, you can’t just deloop some random space. It turns out that having a group structure on G
is precisely what allows us to deloop once. If you wanted to deloop again, you’d better hope for nice
structure on G!
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This is about all we’ll say on the subject for now, but we’ll come back to it later. It’s
also important to know that we get a sequence of inclusions BSO(n) → BSO(n + 1).
Moreover, the pullback of the universal bundle ξn+1 → BSO(n+ 1) is ξn ⊕ R.

2.2. Thom spaces and Thom spectra. We are about to build a Thom spectrum,
which is an extremely nice sort of spectrum. Today, we’ll just do this story for G(n) =
SO(n). If you want complex cobordism, you repeat this story with G(n) = U(n). From
the great zoo of Lie groups, we get a great zoo of Thom spectra, which in turn tie right
back to the various cobordism theories. We’ll come back to this next time.

Definition 2.11. If ξ is a finite-dimensional vector bundle over a compact space, the
Thom space is the one point compactification of the total space: Th(ξ) := ξ ∪ {∞}.

If ξ is finite-dimensional over a non-compact space, then Th(ξ) is given by one point
compactifying each fiber of ξ, and then identifying the point at ∞ across all fibers.

Example 2.12. Take the trivial line bundle R× S1 on S1. What is Th(R× S1)?

Example 2.13. Take the trivial line bundle R× R on R. What is Th(R× R)?

These examples lead us to an important lemma.

Lemma 2.14. Let V be a finite-dimensional vector bundle. Then Th(V ⊕R) is homotopy
equivalent to ΣTh(V ).

Exercise 2.15. Prove Lemma 2.14.

Recall that the universal bundles ξn → BSO(n) satisfy a nice pullback relation: ξn+1

pulls back to ξn ⊕ R under the inclusion BSO(n) → BSO(n + 1). We can now define
our first Thom spectrum.

Definition 2.16. The Thom spectrum MSO is defined as the spectrum with spaces
Th(ξn), where ξn is the universal bundle on BSO(n). The structure maps are given by
ΣTh(ξn) → Th(ξn+1), which are equivalent to maps Th(ξn) → ΩTh(ξn+1) under the
loops-suspension adjunction.

To close the day, we’ll state the theorem that we’ll prove next time.

Theorem 2.17 (Thom). There is a ring isomorphism ΩSO
∗

∼= π∗MSO.

The upshot will be that we can compute cobordism now as the homotopy groups of some
spectrum. More on this next time.

Next time: Proving Pontryagin–Thom, more genera, index theory, and maybe spin
geometry.

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!
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