
LECTURE 5: PONTRYAGIN–THOM ISOMORPHISM

STEPHEN MCKEAN

Most of last lecture was spent proving that ΩSO
4 is not trivial. We did this by defining

the signature of a 4n-manifold, which is the signature of the symmetric non-degenerate
bilinear form (on the R-vector space H2n(M ;R)) induced by the cup product. We then
showed that the signature gives us a well-defined group homomorphism σ : ΩSO

4 → Z,
and I left you the task of computing σ(CP2) = 1.

Today, our goal is to see the magic of homotopy theory. Instead of having to solve some
geometric question to prove something about ΩSO

∗ , we will translate to a more algebraic
computations.

1. Basics of homotopy theory

Let’s recall some definitions from last time.

Definition 1.1. Given a pointed space (X, x), the loop space is the topological space
ΩxX := [(S1, 0), (X, x)]. Here, we give this set of continuous maps the compact open
topology.

Remark 1.2. Looping gives a functor Ω : ho(Top∗) → ho(Top∗). This is actually the
right adjoint in an adjoint pair (Σ,Ω), where Σ is suspension. That is,

[ΣX, Y ]ho(Top∗)
∼= [X,ΩY ]ho(Top∗).

Recall that the smash product of two pointed spaces X and Y is defined as the cofiber
(think “quotient”) X∧Y := (X×Y )/(X∨Y ). Given a pointed space X, the suspension
is defined as ΣX := S1 ∧X.

Often, one sets up spectra in terms of Σ instead of Ω, but loops are a little more intuitively
accessible if you’ve never thought about suspensions before. Anyway, I cannot overstate
how fundamentally important (Σ,Ω) are in homotopy theory.

Exercise 1.3. Prove that [ΣX, Y ]ho(Top∗)
∼= [X,ΩY ]ho(Top∗) as sets.

Now we can introduce spectra. We’ll do these in more detail later, so take this as a first
approximation of a richer story.

Definition 1.4. A spectrum E is a sequence of pointed topological spaces {En}n≥0,
together with structure maps en : En → ΩEn+1.
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A morphism of spectra φ : E → F is a sequence of maps of pointed topological spaces
φn : En → Fn such that the following diagrams all commute:

En Fn

ΩEn+1 ΩFn+1.

φn

en fn

Ωφn+1

Remark 1.5. Recall that a map of topological spaces is called a weak equivalence if
it induces an isomorphism on homotopy groups. We have the same notion for spectra,
where we replace homotopy groups with stable homotopy groups

πs
nE := colim

k→∞
πn+kEk.

Remark 1.6. What is going on here? There’s a theorem known as Brown representabil-
ity, which very roughly says that cohomology should be representable by a sequence of
spaces. That is, there should be spaces {En} such that Hn(X) = [X,En]. But coho-
mology isn’t just a bucket of groups — there should be some connection between Hn

and Hn+1. Spectra naturally come out of this story, and the structure maps tie all the
different dimensions together. We’ll talk about this more rigorously later.

Now that I’ve given you a definition, we need to see an example. Here’s the preview,
which we’ll go through more carefully in a moment. Associated to the classifying space
BG(n) of some Lie group G(n), we will build a topological space known as the Thom
space. This will be the one-point compactification Th(ξn) := ξn ∪ {∞} of the universal
bundle ξn → BG(n). We will see that this construction comes with very natural structure
maps Th(ξn) → ΩTh(ξn+1), so that the Thom spaces fit together to form the Thom
spectrum MG. Finally, we will talk about the Pontryagin–Thom isomorphism, which
relates the homotopy groups of the spectrum MG to the cobordism ring ΩG

∗ .

1.1. Classifying spaces. If you’ve never seen classifying spaces before, here’s a quick
overview of what they are. When we were talking about spectra, I mentioned Brown
representability, which says that the cohomology of a space X should actually come from
maps into some other space Y . This is a powerful idea, because it turns an algebraic
construction into something more geometric.

Classifying spaces arise from trying to apply this idea to the theory of vector bundles.

Definition 1.7. Let G be a topological group. A principal G-bundle over a topological
space X is a bundle P → X with a G-action ρ : G × P → P such that (proj1, ρ) :
P ×G → P ×X P is an isomorphism.

Definition 1.8. Let G be a topological group. A classifying space of G is a topological
space BG such that there is a natural isomorphism of sets

{principal G-bundles over X}/iso ∼= [X,BG]

for sufficiently nice spaces X.
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Remark 1.9. This is sort of an aspirational definition. We want this sort of space to
exist, but why should it? It turns out that classifying spaces of topological groups exist
and are unique up to homotopy. In fact, you can construct them as the delooping of G.
That is, BG can be defined as the space such that ΩBG ≃ G.1

A key player in this story is the universal line bundle ξ → BG. This is how we get our
representability result — given a map f : X → BG, we get a principal G-bundle f ∗ξ on
X. Moreover, every principal G-bundle takes this form.

This is about all we’ll say on the subject for now, but we’ll come back to it later. It’s
also important to know that we get a sequence of inclusions BSO(n) → BSO(n + 1).
Moreover, the pullback of the universal bundle ξn+1 → BSO(n+ 1) is ξn ⊕ R.

1.2. Thom spaces and Thom spectra. We are about to build a Thom spectrum,
which is an extremely nice sort of spectrum. Today, we’ll just do this story for G(n) =
SO(n). If you want complex cobordism, you repeat this story with G(n) = U(n). From
the great zoo of Lie groups, we get a great zoo of Thom spectra, which in turn tie right
back to the various cobordism theories. We’ll come back to this later.

Definition 1.10. If ξ is a finite-dimensional vector bundle over a compact space, the
Thom space is the one point compactification of the total space: Th(ξ) := ξ ∪ {∞}.

If ξ is finite-dimensional over a non-compact space, then Th(ξ) is given by one point
compactifying each fiber of ξ, and then identifying the point at ∞ across all fibers.

In a moment, we’ll put a sequence of Thom spaces together to form a Thom spectrum.
However, Thom spaces are interesting in their own right, as will be evidenced by the
following theorem. Unfortunately, we won’t have time to prove this one, so I’ll leave it
as a hard exercise for the ambitious.

Theorem 1.11 (Thom isomorphism). Let X be a simply connected CW complex. Let
π : V → X be a vector bundle of rank r. Let R be a commutative ring. Then there exists
a cohomology class u ∈ Hr(Th(V );R) that induces an isomorphism

H∗(X;R)
∼=−→ H̃∗+r(Th(V );R)

x 7→ u ⌣ π∗x.

Exercise 1.12. Prove Theorem 1.11 when R = Z/2. Hint: try proving the theorem for
a trivial bundle. Then show that if the theorem is true on open subsets U, V, U ∩V ⊂ X,
then it is also true on U ∪V .2 Use this to prove the theorem when X is compact. When
X is not compact, you’ll need to apply a limit argument (which is where assuming field
coefficients instead of arbitrary coefficients comes in handy).

1In general, you can’t just deloop some random space. It turns out that having a group structure on G
is precisely what allows us to deloop once. If you wanted to deloop again, you’d better hope for nice
structure on G!
2This sort of approach is often called a Mayer–Vietoris argument.
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Now back to Thom spaces. Let’s compute a couple examples.

Example 1.13. Take the trivial line bundle R× S1 on S1. What is Th(R× S1)?

Example 1.14. Take the trivial line bundle R× R on R. What is Th(R× R)?

These examples lead us to an important lemma.

Lemma 1.15. Let V be a finite-dimensional vector bundle. Then Th(V ⊕R) is homotopy
equivalent to ΣTh(V ).

Exercise 1.16. Prove Lemma 1.15.

Recall that the universal bundles ξn → BSO(n) satisfy a nice pullback relation: ξn+1

pulls back to ξn ⊕ R under the inclusion BSO(n) → BSO(n + 1). We can now define
our first Thom spectrum.

Definition 1.17. The Thom spectrum MSO is defined as the spectrum with spaces
Th(ξn), where ξn is the universal bundle on BSO(n). The structure maps are given by
ΣTh(ξn) → Th(ξn+1), which are equivalent to maps Th(ξn) → ΩTh(ξn+1) under the
loops-suspension adjunction.

2. Pontryagin–Thom isomorphism

We can now state the big theorem.

Theorem 2.1 ((Pontryagin–)Thom). There is a ring isomorphism ΩSO
∗

∼= π∗MSO.

To prove this theorem, we need to do the following:

(i) Construct functions fn : ΩSO
n → πnMSO for all n ≥ 0.

(ii) Construct functions gn : πnMSO → ΩSO
n for all n ≥ 0.

(iii) Prove that (fn)
−1 = gn for all n ≥ 0.

(iv) Prove that f∗ and g∗ are ring homomorphisms.

We will do steps (i) and (ii). Step (iii) is a matter of working through the constructions
that show up in (i) and (ii) to check that fn and gn are mutually inverse. Step (iv)
then boils down to checking that f∗ and g∗ are additive over disjoint unions, factor over
Cartesian products, and preserve the multiplicative identity.

Exercise 2.2. Verify steps (iii) and (iv).
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2.1. The Pontryagin–Thom construction. We’ll first construct fn : ΩSO
n → πnMSO

via the Pontryagin–Thom construction. Given an oriented n-manifold M , use the Whit-
ney embedding theorem to embed M in Rn+k for some k. The normal bundle NM of
i : M ↪→ Rn+k is the quotient Rn+k/TM , which is a vector bundle of rank k. The tubular
neighborhood theorem gives us an embedding j : NM ↪→ Rn+k such that the zero section
of j is the embedding i : M → Rn+k.

Note that if we collapse all of Rn+k − j(NM) to a point, we are taking a one point
compactification of NM . In other words, this gives us the Thom space Th(NM). We
can extend this map to Rn+k ∪ {∞} by sending ∞ to the compactifying point as well.
Altogether, we have a composite map

Sn+k = Rn+k ∪ {∞} → Rn+k/(Rn+k − j(NM)) = Th(NM).

Finally, since NM → M is a rank k vector bundle, it arises as the pullback of ξk →
BSO(k) under map p : M → BSO(k). This setup induces a map Th(NM) → Th(ξk).
Note that the homotopy class of the composite

Sn+k = Rn+k ∪ {∞} → Rn+k/(Rn+k − j(NM)) = Th(NM) → Th(ξk)

is an element of πn+k(MSO(k)), which in turn gives us an element of πnMSO. Define
fn(M) ∈ πnMSO to be this element.

Lemma 2.3. The Pontryagin–Thom construction fn : ΩSO
n → πnMSO is well-defined.

Proof. We made three choices along the way: we chose an embedding, a tubular neigh-
borhood, and a classifying map of the normal bundle. Any two tubular neighborhoods
are isotopic, and any two classifying maps are homotopic, so neither of these choices
changes the homotopy class of our composite map. To show that fn is independent of
our choice of embedding, we’ll just wave our hands and say that you can take the stan-
dard embedding of Rn+k into Rn+k+1, apply the construction there, and show that the
resulting element of πn+k+1(MSO(k + 1)) yields the same element of πnMSO. We can
thus assume that k > n+1, and then show that any two embeddings into Rn+k must be
isotopic.

Finally, we need to show that if M1 and M2 are cobordant, then fn(M1) = fn(M2). We’ll
have to wave our hands at this for time’s sake and say that applying the Pontryagin–
Thom construction to the cobordism W will give us a homotopy between the composite
maps fn(M1) and fn(M2). □

2.2. Transversality. Now we will use transversality to construct gn : πnMSO → ΩSO
n .

An element α of πnMSO is represented by a map Sn+k → MSO(k) for some k ≥ n + 1.
This map factors through Sn+k → Th(ξk,ℓ), where ξk,ℓ is the canonical bundle of the
Grassmannian of oriented k-planes in Rℓ. We may assume that this map is smooth and
transverse to the zero section of ξk,ℓ. This zero section is a codimension k submanifold
of the total space of ξk,ℓ, so its preimage under Sn+k −{∞} = Rn+k → ξk,ℓ is a manifold
in Rn+k of dimension n. One can show that this manifold is canonically oriented, so we
call its cobordism class gn(α).



6 STEPHEN MCKEAN

Lemma 2.4. The map gn : πnMSO → ΩSO
n is well-defined.

Proof. For the sake of time, we’ll say even less about this than the previous lemma. We
need to show that gn is independent of the choice of representative Sn+k → MSO(k), as
well as the perturbations we used to get transversality. □

Next time: Finishing Pontryagin–Thom, computing π∗MSO⊗Q, the L-genus, and the
Hirzebruch signature theorem.

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!
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