
LECTURE 6: PONTRYAGIN–THOM (CONTINUED)

STEPHEN MCKEAN

We ended last time in the middle of the Pontryagin–Thom construction. Let me remind
you where we were with that.

Definition 0.1. The Thom spectrum MSO is defined as the spectrum with spaces
Th(ξn), where ξn is the universal bundle on BSO(n). The structure maps are given by
ΣTh(ξn) → Th(ξn+1), which are equivalent to maps Th(ξn) → ΩTh(ξn+1) under the
loops-suspension adjunction.

1. Pontryagin–Thom isomorphism

We can now state the big theorem.

Theorem 1.1 ((Pontryagin–)Thom). There is a ring isomorphism ΩSO
∗

∼= π∗MSO.

To prove this theorem, we need to do the following:

(i) Construct functions fn : ΩSO
n → πnMSO for all n ≥ 0.

(ii) Construct functions gn : πnMSO → ΩSO
n for all n ≥ 0.

(iii) Prove that (fn)
−1 = gn for all n ≥ 0.

(iv) Prove that f∗ and g∗ are ring homomorphisms.

We will do steps (i) and (ii). Step (iii) is a matter of working through the constructions
that show up in (i) and (ii) to check that fn and gn are mutually inverse. Step (iv)
then boils down to checking that f∗ and g∗ are additive over disjoint unions, factor over
Cartesian products, and preserve the multiplicative identity.

Exercise 1.2. Verify steps (iii) and (iv).

1.1. The Pontryagin–Thom construction. We’ll first construct fn : ΩSO
n → πnMSO

via the Pontryagin–Thom construction. Given an oriented n-manifold M , use the Whit-
ney embedding theorem to embed M in Rn+k for some k. The normal bundle NM of
i : M ↪→ Rn+k is the quotient Rn+k/TM , which is a vector bundle of rank k. The tubular
neighborhood theorem gives us an embedding j : NM ↪→ Rn+k such that the zero section
of j is the embedding i : M → Rn+k.

Note that if we collapse all of Rn+k − j(NM) to a point, we are taking a one point
compactification of NM . In other words, this gives us the Thom space Th(NM). We
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can extend this map to Rn+k ∪ {∞} by sending ∞ to the compactifying point as well.
Altogether, we have a composite map

Sn+k = Rn+k ∪ {∞} → Rn+k/(Rn+k − j(NM)) = Th(NM).

Finally, since NM → M is a rank k vector bundle, it arises as the pullback of ξk →
BSO(k) under map p : M → BSO(k). This setup induces a map Th(NM) → Th(ξk).
Note that the homotopy class of the composite

Sn+k = Rn+k ∪ {∞} → Rn+k/(Rn+k − j(NM)) = Th(NM) → Th(ξk)

is an element of πn+k(MSO(k)), which in turn gives us an element of πnMSO. Define
fn(M) ∈ πnMSO to be this element.

Lemma 1.3. The Pontryagin–Thom construction fn : ΩSO
n → πnMSO is well-defined.

Proof. We made three choices along the way: we chose an embedding, a tubular neigh-
borhood, and a classifying map of the normal bundle. Any two tubular neighborhoods
are isotopic, and any two classifying maps are homotopic, so neither of these choices
changes the homotopy class of our composite map. To show that fn is independent of
our choice of embedding, we’ll just wave our hands and say that you can take the stan-
dard embedding of Rn+k into Rn+k+1, apply the construction there, and show that the
resulting element of πn+k+1(MSO(k + 1)) yields the same element of πnMSO. We can
thus assume that k > n+1, and then show that any two embeddings into Rn+k must be
isotopic.

Finally, we need to show that if M1 and M2 are cobordant, then fn(M1) = fn(M2). We’ll
have to wave our hands at this for time’s sake and say that applying the Pontryagin–
Thom construction to the cobordism W will give us a homotopy between the composite
maps fn(M1) and fn(M2). □

1.2. Transversality. Now we will use transversality to construct gn : πnMSO → ΩSO
n .

An element α of πnMSO is represented by a map Sn+k → MSO(k) for some k ≥ n+1. If
this were a map of finite dimensional manifolds, we could try using the implicit function
theorem to construct and element of ΩSO

n (which is what we’ll eventually do). But for
now, we don’t really know what MSO(k) actually looks like. It turns out that BSO(k) is
the infinite real Grassmannian of oriented k-planes. The oriented Grassmannian Grk(Rℓ)
is a manifold parameterizing oriented k-planes in Rℓ (which you can realize as the oriented
double cover of the usual Grassmannian), and BSO(k) is the colimit colim

ℓ→∞
Grk(Rℓ). Each

of these oriented Grassmannians comes with a canonical bundle ξk,ℓ, and MSO(k) is given
by colim

ℓ→∞
Th(ξk,ℓ).

All of this tells us that Sn+k → MSO(k) factors through γ : Sn+k → Th(ξk,ℓ) for some ℓ,
where ξk,ℓ is the canonical bundle of the Grassmannian of oriented k-planes in Rℓ. Since
Th(ξk,ℓ) is a Thom space over a compact base, Th(ξk,ℓ)− {∞} is homeomorphic to the
total space of ξk,ℓ (by definition). Let U = Sn+k − γ−1(∞) ⊆ Rn+k. We thus have a
continuous map γ|U : U → ξk,ℓ of smooth manifolds, so γ|U is homotopic to a smooth
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map. Smooth maps can always be perturbed to be transverse to a given submanifold on
the target, so we may assume that γ is transverse to the zero section in ξk,ℓ.

The total space ξk,ℓ has dimension k + dimGrk(Rℓ), and the zero section has dimension
Grk(Rℓ). In other words, the zero section has codimension k, and γ : U → ξk,]ell is a
smooth map that is transverse to this zero section. Now by the inverse image theorem,
the inverse image of the zero section under γ is a smooth, oriented manifold M ⊂ Rn+k

of codimension k. Define gn(α) := M .

Lemma 1.4. The map gn : πnMSO → ΩSO
n is well-defined.

Proof. For the sake of time, we’ll say even less about this than the previous lemma. We
first need to show that gn is independent of the choice of representative Sn+k → MSO(k),
as well as the perturbations we used to get transversality.

Increasing k changes the dimension of the ambient space in which M is embedded, but
does not change M itself.

If α1, α2 : Sn+k → MSO(k) are two homotopy equivalent maps, then this homotopy
will yield a cobordism from gn(α1) to gn(α2). This means that choosing a different
representative of α or perturbing α to get smoothness and transversality will not change
the cobordism class of M . □

2. Computing π∗MSO⊗Q

Theorem 1.1 tells us that if we want to compute ΩSO
∗ , it suffices to compute π∗MSO.

How hard could it be? Well it turns out that this is doable, but it’s still pretty hard. If
you want to know the answer, you’ll have to go to the great work of Wall [Wal60].

We’ll just answer the easier question of computing π∗MSO⊗Q. This will be a compilation
of a few lemmas, each with some content that we won’t entirely prove. Before we begin,
we need to define the homology of the spectrum MSO.

Definition 2.1. The stable rational homology groups of MSO are defined as

Hn(MSO;Q) := colim
k→∞

Hn+k(MSO(k);Q).

Lemma 2.2. We have π∗MSO⊗Q ∼= H∗(MSO;Q).

Proof. This is an isomorphism between homotopy groups and homology groups — if
you’ve taken algebraic topology before, your brain should be screaming, “Hurewicz!”
We only need the rational version of the Hurewicz theorem, which says that if X is
simply connected with πi(X) ⊗ Q = 0 for i ≤ r, then πi(X) ⊗ Q → H̃i(X;Q) is an
isomorphism for 0 ≤ i ≤ 2r and a surjection for i = 2r + 1.

Now let’s think about what π∗MSO and H∗(MSO) mean. We want to relate

colim πn+kMSO(k)⊗Q and colim Hn+k(MSO(k);Q).
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I will leave it as an exercise that MSO(k) is simply connected with πi(MSO(k)) = 0 for
1 ≤ i ≤ k − 1. The rational Hurewicz theorem now tells us that πi+kMSO(k) ⊗ Q ∼=
Hi+k(MSO(k);Q) for 0 ≤ i ≤ 2k − 2. Taking the colimit as k → ∞ gives us the desired
result. □

Exercise 2.3. Prove that MSO(k) is simply connected with πi(MSO(k)) = 0 for 1 ≤
i ≤ k − 1. Remember that MSO(k) is a Thom space of a rank k vector bundle over
BSO(k).

Lemma 2.4. We have H∗(MSO;Q) ∼= H∗(BSO;Q).

Proof. This is an application of the Thom isomorphism from earlier. We had phrased it
in terms of cohomology, but on homology we get an isomorphism Hi+k(MSO(k);Q) ∼=
Hi(BSO(k);Q). Here, the degree k shift comes from the fact that MSO(k) is the Thom
space of a rank k vector bundle over BSO(k).

It remains to show that Hi(BSO;Q) ∼= colim Hi(BSO(k);Q). To see this, it suffices to
show that the inclusion BSO(k) → BSO is k-connected. It follows thatHi(BSO(k);Q) ∼=
Hi(BSO;Q) for k > i, so the desired result holds by taking the colimit as k → ∞. □

Exercise 2.5. Show that the inclusion BSO(k) → BSO is k-connected. Recall that a
continuous map f : X → Y of topological spaces is k-connected if for all x ∈ X, the
induced maps f∗ : πi(X, x) → πi(Y, f(x)) are isomorphisms for all i < k and a surjection
for i = k.

Remark 2.6. So far, we’ve turned a geometric question (computing ΩSO
∗ ⊗ Q) into a

homotopical question (computing π∗MSO⊗Q), which we’ve now turned into an algebraic
question (computing H∗(BSO;Q)).

We had to do some math for each of these translations, but it feels like everything we’ve
done so far is easier than computing ΩSO

∗ itself. By conservation of math, there should
be as much mathematical content (whatever that means) in proving ΩSO

∗ geometrically
or via our current route. The next step is to compute H∗(BSO;Q). This is a “standard”
computation, but it generally involves several other theorems.

Lemma 2.7. We have H∗(BSO;Q) ∼= Q[p1, p2, . . .], where |pi| = 4i.

Proof. An H-space is the homotopy-theoretic analog of a topological group: it is a
topological space X with a chosen element e ∈ X, a continuous map µ : X ×X → X,
and for each x ∈ X a homotopy from x 7→ µ(x, e) to the identity map and x 7→ µ(e, x)
to the identity map. H-spaces have lots of nice properties. For example, the Milnor–
Moore theorem states that if X is a path connected H-space, then H∗(X;Q) is a free
graded-commutative algebra on π∗(X)⊗Q.

It turns out that BSO is an H-space (see Exercise 2.8). So if we want to compute
H∗(BSO;Q), all we have to do is compute π∗(BSO)⊗Q. Well, using the loop-suspension
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adjunction, we find that

[Si, BSO(n)] ∼= [ΣSi−1, BSO(n)]

∼= [Si−1,ΩBSO(n)]

∼= [Si−1, SO(n)].

In particular, πi(BSO(n)) ∼= πi−1(SO(n)). Now SO(n) is the connected component of
O(n), so πi(SO(n)) = πi(O(n)) for all i ≥ 1. The homotopy groups of O = colim O(n)
are famously given by the Bott periodicity theorem:

n (mod 8) 0 1 2 3 4 5 6 7
πnO Z/2 Z/2 0 Z 0 0 0 Z

Altogether, we find that π∗(BSO) is Z/2 when ∗ ≡ 1 or 2 mod 8, Z when ∗ ≡ 0 mod 4,
and 0 otherwise. Tensoring with Q kills the torsion groups, so we find that π∗(BSO)⊗Q
is rank 1 in dimensions 4n > 0. □

Exercise 2.8. Prove that direct sums of principal SO-bundles gives BSO the structure
of an H-space.

The generators pi are typically chosen to be the Pontryagin classes, which belong in any
basic toolkit of cohomology classes.

We’re almost there. The last thing we need to do is explain why H∗(BSO;Q) can be
generated by {CP2,CP4, . . .} instead of {p1, p2, . . .}.

Exercise 2.9. Building on last lecture, show that the signature of a 4n-manifold induces
a group homomorphism σ : ΩSO

4n → Z. Prove that σ(CP2n) = 1, and deduce that
{CP2,CP4, . . .} generate ΩSO

∗ ⊗Q.

Next time: Hirzebruch signature theorem, then modular formss. We’ll come back to
genera later.

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!
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