
LECTURE 7: HIRZEBRUCH SIGNATURE THEOREM AND THE
WEIERSTRASS ℘-FUNCTION

STEPHEN MCKEAN

Today, we’ll wrap up our discussion about genera for a while, and then hopefully switch
gears to modular forms. Last time, we finished proving that ΩSO

∗ ⊗ Q ∼= Q[p1, . . .] ∼=
Q[CP2, . . .]. We have a few loose ends: what are these Pontryagin classes doing here,
and what can we say about the “signature” genus? We’ll answer both of these questions,
and we’ll hopefully gain an appreciation for the characteristic series of a genus along the
way.

1. Computing π∗MSO⊗Q

Last time, we proved that π∗MSO⊗Q ∼= H∗(BSO;Q). Let’s finish off the calculation.

Lemma 1.1. We have H∗(BSO;Q) ∼= Q[p1, p2, . . .], where |pi| = 4i.

Proof. An H-space is the homotopy-theoretic analog of a topological group: it is a
topological space X with a chosen element e ∈ X, a continuous map µ : X ×X → X,
and for each x ∈ X a homotopy from x 7→ µ(x, e) to the identity map and x 7→ µ(e, x)
to the identity map. H-spaces have lots of nice properties. For example, the Milnor–
Moore theorem states that if X is a path connected H-space, then H∗(X;Q) is a free
graded-commutative algebra on π∗(X)⊗Q.

It turns out that BSO is an H-space (see Exercise 1.2). So if we want to compute
H∗(BSO;Q), all we have to do is compute π∗(BSO)⊗Q. Well, using the loop-suspension
adjunction, we find that

[Si, BSO(n)] ∼= [ΣSi−1, BSO(n)]

∼= [Si−1,ΩBSO(n)]

∼= [Si−1, SO(n)].

In particular, πi(BSO(n)) ∼= πi−1(SO(n)). Now SO(n) is the connected component of
O(n), so πi(SO(n)) = πi(O(n)) for all i ≥ 1. The homotopy groups of O = colim O(n)
are famously given by the Bott periodicity theorem:

n (mod 8) 0 1 2 3 4 5 6 7
πnO Z/2 Z/2 0 Z 0 0 0 Z

Altogether, we find that π∗(BSO) is Z/2 when ∗ ≡ 1 or 2 mod 8, Z when ∗ ≡ 0 mod 4,
and 0 otherwise. Tensoring with Q kills the torsion groups, so we find that π∗(BSO)⊗Q
is rank 1 in dimensions 4n > 0. □
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Exercise 1.2. Prove that direct sums of principal SO-bundles gives BSO the structure
of an H-space.

Remark 1.3. Last time, we had following question: why is H∗(BSO;Q) a ring instead
of just a sequence of groups? Well, this is a consequence of BSO being an H-space.
Given two topological spaces X and Y , taking products of singular simplices gives us a
map Hm(X;R)⊗Hn(Y ;R) → Hm+n(X × Y ;R). If X = Y is an H-space, then we can
use the multiplication map µ : X ×X → X to obtain a map

Hm(X;R)⊗Hn(X;R) → Hm+n(X ×X;R)
µ∗−→ Hm+n(X;R).

This is sometimes called the Pontryagin product. You can check that this turns H∗(X;R)
into a graded ring. Last time, we showed that π∗(BSO) ⊗ Q and H∗(BSO;Q) are
isomorphic as sequences of abelian groups. To finish off the proof, we need to check that
the Pontryagin product is compatible with the graded ring structure on π∗(BSO) ⊗ Q.
I’ll leave this as an unofficial exercise.

Note that I haven’t told you where the graded ring structure on stable homotopy groups
comes from — if you haven’t seen this yet, don’t worry about it for now. I’m saving it
for when we dive a little deeper into spectra (a few weeks from now).

The generators pi are typically chosen to be the Pontryagin classes, which belong in any
basic toolkit of cohomology classes.

We’re almost there. The last thing we need to do is explain why H∗(BSO;Q) can be
generated by {CP2,CP4, . . .} instead of {p1, p2, . . .}.

Exercise 1.4. Building on last lecture, show that the signature of a 4n-manifold induces
a group homomorphism σ : ΩSO

4n → Z. Prove that σ(CP2n) = 1, and deduce that
{CP2,CP4, . . .} generate ΩSO

∗ ⊗Q.

2. The L-genus and Hirzebruch signature theorem

Last week, we saw that the signature of a 4-manifold is a cobordism invariant. The same
style of proof can be used to show that the signature of a 4n-manifold is a cobordism
invariant. If we define the signature of an n-manifold to be 0 whenever 4 ∤ n, and
using the Künneth formula to prove that σ(M1 × M2) = σ(M1) · σ(M2), we find that
σ : ΩSO

∗ → Z is a genus.

We could write down the logarithm and characteristic series of this genus, but you would
be left still wondering, “How did anybody come up with these power series? Why not
take a different type of generating function?” Well, let’s dive into the history. While
working on cobordism theory, Thom discovered a relationship between the signature of
4-manifolds and their Pontryagin classes.

Definition 2.1. Given a manifold M , the kth Pontryagin class is defined to be

pk(M) := (−1)kc2k(TM ⊗ C) ∈ H4k(M ;Z),
where c2k is the 2kth Chern class.
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Theorem 2.2 (Thom). Let M be a compact, oriented 4-manifold. Then σ(M) =∫
M

p1
3
:= ⟨p1(M)

3
, [M ]⟩.

Proof. Since σ and p1 both determine linear maps ΩSO
4 ⊗ Q

∼=−→ Q, they must differ
by a constant. It thus suffices to compute

∫
CP2 p1 = 3, which you will do in the next

exercise. □

Exercise 2.3. Prove that pk(CPn) := pk(TCPn) =
(
n+1
k

)
for 1 ≤ k ≤ n/2.

Hint: there is an isomorphism of vector bundles TCPn⊕O ∼= O(1)⊕n+1. The total Chern
class of O(1) is c(O(1)) = 1 + x, where x ∈ H2(CP2) is a hyperplane class. Use this to
compute c(TCPn) = c(O(1))n+1, which will tell you ck(TCPn) for 1 ≤ k ≤ n. Finally,
use the identity

(1− p1 + p2 − · · · ± pn) = (1− c1 + c2 − · · · ± cn)(1 + c1 + c2 + · · ·+ cn)

to deduce a formula for the total Pontryagin class p(TCPn).

Theorem 2.2 is great, because it allows us to compute a global analytic invariant σ
in terms of an algebraic invariant p1. In 1953, Hirzebruch was thinking about how to
generalize this theorem to dimension 4n for any n ≥ 1. He formulated the following
conjecture:1

Conjecture 2.4 (Hirzebruch). Let

L(x) :=
x

tanhx
=

∑
k≥0

22kB2kx
2k

(2k)!
,

where Bn is the nth Bernoulli number. Let Ln(p1, . . . , pn) be the degree 4n term of
L(x1) · · ·L(xn), where xi is a variable of degree 2 and pi is the ith elementary symmetric
polynomial in the variables x2

1, . . . , x
2
n. Then for any compact, oriented 4n-manifold M ,

we have

σ(M) =

∫
M

Ln(p1, . . . , pn).

Remark 2.5. This seems like a crazy definition of the polynomials Ln. Where does it
come from? Hirzebruch was hoping for polynomials Ln in the Pontryagin classes such
that σ(M) =

∫
M
Ln(p1, . . . , pn). It turns out that L(x) is the unique power series that

is even and such that the coefficient of xn in L(x)2n+1 is 1. The condition that L(x) is
even comes from the fact that Pontryagin classes are even functions of the plane class
x. The requirement that the coefficient of xn in L(x)2n+1 be 1 comes from applying the
splitting principle.

There’s a little more to the story — L(x) needs to be the power series associated to
a multiplicative sequence of polynomials. We won’t have time to really explore this
properly in class, but multiplicative sequences and the Hirzebruch signature theorem

1For Hirzebruch’s explanation of how one might arrive at such a conjecture, see [Hir71, §2].
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really showcase the interplay between geometry, topology, and analysis that we’ve been
talking about. Let me know if you’re interested in reading more about it and need help
finding references!

Theorem 2.6 (Hirzebruch signature theorem). Conjecture 2.4 is true.

Proof. We’ll skip the mathematical details and just mention the historical drama. Hirze-
bruch was able to show that M 7→

∫
M
Ln(p1, . . . , pn) defined a ring homomorphism

ΩSO
∗ ⊗Q → Q. Moreover, he could show that this ring homomorphism agreed with the

ring homomorphism σ : ΩSO
∗ ⊗Q → Q on the manifolds CP2n.

Shortly thereafter (on June 2, 1953 to be precise), fortune struck. Hirzebruch went to
the library, pulled the latest edition of Comptes Rendus off the shelf, and saw Thom’s
new theorem: ΩSO

∗ ⊗Q ∼= Q[CP2,CP4, . . .]. □

Remark 2.7. The power series L(x) is the characteristic series of the L-genus or signa-
ture genus. There are analogs and generalizations of the Hirzebruch signature theorem,
which relate genus values to polynomials coming from characteristic series. We’ll see
more of this later.

Exercise 2.8. Compute the logarithm of the L-genus. What does this tell you about
the L-genus of CPn?

3. The Weierstrass ℘-function

The Hirzebruch signature theorem is a nice place to end our discussion of oriented
cobordism. We’ll soon come back to cobordism and see some a more general type of
signature theorem. But we first need to take a detour through the world of modular
forms.

Recall that an elliptic function is a doubly periodic, meromorphic function. These were
discovered by inverting the three basic elliptic integrals. Today, I’ll introduce a famous
and remarkable elliptic function.

Definition 3.1. Let ω1, ω2 ∈ C be R-linearly independent. Let Λ be the lattice generated
by ω1 and ω2. The Weierstrass ℘-function2 is the C-valued function

℘(z, ω1, ω2) := ℘(z,Λ) :=
1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)
.

If Λ is apparent from context, one often writes ℘(z).

Remark 3.2. Just as the Jacobi elliptic functions arise from inverting elliptic integrals,
one can discover ℘(z) as the extension of u−1(z) to all of C, where

u(z) = −
∫ ∞

z

dt√
4t3 − at− b

2The LATEX for ℘ is \wp.
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for some a, b ∈ C with a3 − 27b2 ̸= 0.

We have a few things to prove about ℘(z). The first is that its definition actually
converges at z ∈ C− Λ.

Lemma 3.3. The series

1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)
converges absolutely on C− Λ and uniformly on compact sets.

Exercise 3.4. Prove Lemma 3.3.

Hint: show that for any r > 0, the series converges uniformly on {|z| ≤ r} by splitting
the sum into a finite sum with poles and an infinite sum. A finite sum with poles is
meromorphic and converges uniformly absolutely. You’ll have to show more directly that
the infinite sum converges uniformly and absolutely.

Now we can show that ℘(z) is doubly periodic with respect to ω1 and ω2.

Lemma 3.5. We have ℘(z) = ℘(z + ω1) = ℘(z + ω2) for all z ∈ C.

Proof. Since the summation definition converges absolutely, we can reorder the terms in
the sum. Now pick ω1 and ω2 that generate Λ. Can you see from the summation why
℘(z + ω1) = ℘(z + ω2) = ℘(z)? □

By construction, we can see that ℘(z) has a double pole at λ for each λ ∈ Λ. In fact,
℘(z) is meromorphic.

Lemma 3.6. The function ℘(z) is meromorphic with derivative

℘′(z) = −2
∑
λ∈Λ

1

(z − λ)3
.

Proof. The derivative just comes from the power rule. To see that ℘(z) is meromorphic,
pick r > 0 such that {z ∈ C : |z| ≤ r} contains a fundamental domain of ℘(z). We
have seen that the summation for ℘(z) is uniformly convergent on this set, so ℘(z) is
uniformly convergent on its fundamental domain. By double periodicity, we find that
℘(z) is uniformly convergent (and hence meromorphic) on all of C. □

Next time, we’ll learn some more about ℘. This will serve as our introduction to modular
forms in general.

Next time: More ℘ and modular forms.

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!
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