
LECTURE 8: THE WEIERSTRASS ℘-FUNCTION AND FRIENDS

STEPHEN MCKEAN

Last time, we met the Weierstrass ℘-function

℘(z) =
1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)
,

which is the sort of thing you end up with if you try to manually construct a doubly
periodic meromorphic function.

Remark 0.1. Just as the Jacobi elliptic functions arise from inverting elliptic integrals,
one can discover ℘(z) as the extension of u−1(z) to all of C, where

u(z) = −
∫ ∞

z

dt√
4t3 − at− b

for some a, b ∈ C with a3 − 27b2 ̸= 0.

1. The Weierstrass ℘-function

We left as an exercise that the summation notation for ℘(z) satisfies nice convergence
properties. One of these is that the sum converges absolutely (away from the poles),
which means that we can reorder the summation. The ability to reorder the summation
is how we showed that ℘ is indeed doubly periodic.

By construction, we can see that ℘(z) has a double pole at λ for each λ ∈ Λ. In fact,
℘(z) is meromorphic.

Lemma 1.1. The function ℘(z) is meromorphic with derivative

℘′(z) = −2
∑
λ∈Λ

1

(z − λ)3
.

Proof. The derivative just comes from the power rule. To see that ℘(z) is meromorphic,
pick r > 0 such that {z ∈ C : |z| ≤ r} contains a fundamental domain of ℘(z). We left
as an exercise that the summation for ℘(z) is uniformly convergent on this set, so ℘(z)
is uniformly convergent on its fundamental domain. By double periodicity, we find that
℘(z) is uniformly convergent (and hence meromorphic) on all of C. □

So now we’ve got a shiny, new elliptic function. What should we do with it? The first
thing you might try is expressing ℘(z) as a Laurent series to get a better sense of its
behavior.
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Lemma 1.2. Let r = min{|λ| : λ ∈ Λ− {0}}. The Laurent series of ℘(z) for |z| < r is
given by

℘(z) =
1

z2
+
∑
n≥1

(2n+ 1)

 ∑
λ∈Λ−{0}

λ−(2n+2)

 z2n.

Proof. Since the summation formula for ℘(z) converges absolutely, we can rearrange the
summands. Recall that

−1 +
1

(x− 1)2
= −1 +

1

(1− x)2
=
∑
n≥1

(n+ 1)xn

for |x| < 1. For each λ ∈ Λ− {0}, the definition of r implies that |z/λ| < 1 for |z| < r.
Using this fact, we get

℘(z) =
1

z2
+

∑
λ∈Λ−{0}

(
1

(z − λ)2
− 1

λ2

)

=
1

z2
+

∑
λ∈Λ−{0}

(
1

( z
λ
− 1)2

1

λ2
− 1

λ2

)

=
1

z2
+

∑
λ∈Λ−{0}

1

λ2

(∑
n≥1

(n+ 1)
(z
λ

)n)

=
1

z2
+
∑
n≥1

(n+ 1)

 ∑
λ∈Λ−{0}

λ−(n+2)

 zn.

It remains to show that the odd powers vanish (which you should expect, since our usual
definition of ℘(z) is clearly an even function). If n is odd, then λ−(n+2) = −(−λ)−(n+2).
Since λ,−λ ∈ Λ, it follows that

∑
λ∈Λ−{0} λ

−(n+2) = 0 for every odd n. □

Psychologically, this feels a little more familiar than our original formulation of ℘(z) —
except for the coefficients G2n+2 :=

∑
λ∈Λ−{0} λ

−(2n+2). What are we supposed to make
of these? We’ll get to this in a second. But first, an exercise:

Exercise 1.3. Let g2 := 60G4 and g3 := 140G6. Prove that ℘(z) satisfies the differential
equation

℘′(z)2 = 4℘(z)− g2℘(z)− g3.

Hint: form a linear combination of powers of ℘ and ℘′ in a way that eliminates the pole
at z = 0. Such a linear combination preserves the periodicity, so eliminating the pole at
z = 0 removes all poles and yields an entire function. Now think about why (and how)
we can apply Liouville’s theorem in this situation.
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1.1. Elliptic curves are not ellipses. Here’s an amazing fact about g2 and g3. Since
℘(z) is periodic over the lattice Λ, it gives us a well-defined function on C/Λ. Topolog-
ically, C/Λ is a torus. But in fact, C/Λ is the complex projective curve cut out by the
equation

y2z = 4x3 − g2xz
2 − g3z

3.

Note that this is the homogenization of the differential equation in the previous exercise.
So not only does the lattice Λ determine the elliptic curve C/Λ, but we can explicitly
recover its defining equation from Λ. Let’s actually prove this claim.

Lemma 1.4. Let Λ ⊂ C be a lattice with Weierstrass function ℘(z). Then there is a
biholomorphism from C/Λ to the complex projective curve cut out by y2z = 4x3−g2xz

2−
g3z

3.

Proof. Let E := {[x : y : z] ∈ CP2 : y2z = 4x3 − g2xz
2 − g3z

3}. Define φ : C → E by

φ(z) =

{
[℘(z) : ℘′(z) : 1] z ∈ C− Λ,

[0 : 1 : 0] z ∈ Λ.

Since ℘ and ℘′ are periodic with respect to Λ, we get a well-defined map φ̄ : C/Λ → E.
Moreover, both ℘ and ℘′ are holomorphic away from Λ, so φ̄ is holomorphic away from
the point that we’ve collapsed Λ to. Even better, we’ve compactified our source and
target, so φ̄ no longer has a pole on the image of Λ — φ̄ is holomorphic on all of C/Λ.

It remains to show that φ̄ is bijective, since a bijective holomorphic function is automat-
ically biholomorphic (one of the many miracles of complex analysis). Surjectivity comes
from a formal argument: φ is a non-constant holomorphic map, so it is an open map. It
follows that φ̄ is an open map between compact spaces, so φ̄ is surjective.

To see injectivity, we first note that ℘(z) : C/Λ → C∪ {∞} is two-to-one (or has degree
2 ). We even know how each pair of preimages looks. Since ℘(z) is an even function,
℘−1(℘((z)) = {±z} (except at z = −z, where we have the double pole ℘(z) = ∞). To
rephrase, ℘(z) = ℘(z′) if and only if z = ±z′.

So to see that φ̄ is injective, we just need to show that ℘′(z) ̸= ℘′(−z) for any z ̸= −z.
Since ℘′(z) is an odd function, ℘′(z) = ℘′(−z) implies ℘′(z) = 0. But ℘′(z) implies
that ℘ has a double point at z, and the double points of ℘ only occur when z = −z.
In particular, ℘′(z) = ℘′(−z) implies that ℘ has a single preimage at ℘(z), so φ̄ is
injective. □

This is how elliptic curves were discovered historically, which explains the confusing
terminology: elliptic curves are tori, not ellipses. We’ll talk more about elliptic curves
next time.

2. Eisenstein series

To get a handle on G2n+2, let’s express these as a sum over the integer lattice, with a
complex variable accounting for the shift from the integer lattice to Λ. Up to scaling



4 STEPHEN MCKEAN

and rotation, every lattice is generated by 1 and τ ∈ H := {z ∈ C : Im(z) > 0}. This
leads us to the notion of Eisenstein series.

Definition 2.1. The Eisenstein series of weight 2k is the function

G2k(τ) :=
∑

(m,n)∈Z2−{(0,0)}

(m+ nτ)−2k

on the upper half-plane H.

Remark 2.2. Before studying any properties of G2k(τ), one should check that this series
converges absolutely for k ≥ 2. The argument is more or less the same as the one used
to check that our original summation formula for ℘(z) converges absolutely, which was
left to you as an exercise.

Alright, on to the miraculous properties of G2k(τ).

Lemma 2.3 (Translation invariance). If k ≥ 2, then G2k(τ + 1) = G2k(τ).

Proof. Since the defining sum for G2k(τ) converges absolutely, we can rearrange sum-
mands, compute m+ n(τ + 1) = m+ n+ nτ , and check that the function

Z2 − {(0, 0)} → Z2 − {(0, 0)}
(m,n) 7→ (m+ n, n)

is bijective. The inverse is given by (a, b) 7→ (a− b, b). □

Lemma 2.4 (Inversion). If k ≥ 2, then G2k(−1/τ) = τ 2kG2k(τ).

Proof. First, we need to check that −1/τ ∈ H. Indeed, if b > 0, then −1/(a + ib) =
−(a− ib)/(a2 + b2), which has positive imaginary part. Now

G2k(−1/τ) =
∑
m,n

(m− n/τ)−2k

=
∑
m,n

τ 2k(mτ − n)−2k

= τ 2k
∑
n,−m

(nτ +m)2k

= τ 2kG2k(τ). □

Exercise 2.5 (Automorphy). Let k ≥ 2. Let γ =

(
a b
c d

)
∈ SL2(Z). Show that γ acts

on H by τ 7→ aτ+b
cτ+d

. Then prove that G2k(γ · τ) = (cτ + d)2k ·G2k(τ).

Exercise 2.6 (Bounded growth). Prove that if k ≥ 2, then there exists some A,B > 0
such that |G2k(τ)| < A for all τ with Im(τ) > B.
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2.1. Modular forms. The Eisenstein series are our first examples ofmodular forms. We
just saw that they G2k satisfies three interesting symmetry relations and one condition
on its growth. These seem like very strong properties for a function to have, and yet
G2k give us a whole family of non-trivial functions satisfying these properties. Anytime
you have a family of objects satisfying surprisingly strong conditions, you should make
a definition and look for more examples.

Definition 2.7. A modular form of weight k is a complex function f : H → C satisfying
three conditions:

(i) f is holomorphic on H.

(ii) f satisfies weight k automorphy : for any γ =

(
a b
c d

)
∈ SL2(Z), we have f(γ · τ) =

(cτ + d)kf(τ).

(iii) There exist A,B > 0 such that |f(τ)| < A for all τ with Im(τ) > B.

Exercise 2.8. Show that every modular form of weight k satisfies translation invariance
(f(τ + 1) = f(τ)) and inversion (f(−1/τ) = τ kf(τ)).

Next time, we’ll see lots more examples of modular forms. For now, see if you can use
G2k to cook up new examples!

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!

Next time: more modular forms, then elliptic curves.
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