
LECTURE 9: MODULAR FORMS

STEPHEN MCKEAN

Last time, we gave the following Laurent series expansion of the Weierstrass ℘-function:

℘(z,Λ) =
1

z2
+
∑
n≥1

(n+ 1)

 ∑
λ∈Λ−{0}

λ−(2n+2)z2n

 .

We then defined the Eisenstein series of weight 2k to be

G2k(Λ) :=
∑

λ∈Λ−{0}

λ−2k

for k ≥ 2. We then learned that if we represent our lattice Λ as depending on a single
parameter of the upper half-plane, G2k becomes truly remarkable:

(i) Translation invariance: G2k(τ + 1) = G2k(τ).

(ii) Inversion: G2k(−1/τ) = τ 2kG(τ).

(iii) Automorphy: G2k(γ · τ) = (cτ + d)2kG(τ) for any γ =

(
a b
c d

)
∈ SL2(Z).

(iv) Bounded growth: there exist A,B > 0 such that |G2k(τ)| < A for each τ such that
Im(τ) > B.

Today, we’re going to talk about functions satisfying these properties. But first, I want
to officially write down an exercise for you. The point of this exercise is to help you get
a sense of how lossy (or not) our restriction from G2k(Λ) to G2k(τ) might be.

Exercise 0.1. Let Λ be a lattice. Let Λ′ be a the lattice given by rotating Λ by angle
θ and stretching by r > 0. What is the relationship between G2k(Λ) and G2k(Λ

′)?

1. Modular forms

The Eisenstein series are our first examples of modular forms. We just saw that they G2k

satisfies three interesting symmetry relations and one condition on its growth. These
seem like very strong properties for a function to have, and yet G2k give us a whole
family of non-trivial functions satisfying these properties. Anytime you have a family of
objects satisfying surprisingly strong conditions, you should make a definition and look
for more examples.
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Definition 1.1. A modular form of weight k is a complex function f : H → C satisfying
three conditions:

(i) f is holomorphic on H.

(ii) f satisfies weight k automorphy : for any γ =

(
a b
c d

)
∈ SL2(Z), we have f(γ · τ) =

(cτ + d)kf(τ).

(iii) There exist A,B > 0 such that |f(τ)| < A for all τ with Im(τ) > B.

Exercise 1.2. Show that every modular form of weight k satisfies translation invariance
(f(τ + 1) = f(τ)) and inversion (f(−1/τ) = τ kf(τ)).

We’ve made our definition of modular forms based on the examples we have at hand.
Now it’s time to look for more examples. Your first instinct should always be to check
if your new definition admits a group or even ring structure.

Lemma 1.3. If f and g are modular forms of weight k, then f + g is a modular form
of weight k.

Proof. There are three things to check:

(i) Holomorphicity. The sum of two holomorphic functions is again holomorphic, so
we’re good here.

(ii) Automorphy. If γ =

(
a b
c d

)
∈ SL2(Z), then

(f + g)(γ · τ) = f(γ · τ) + g(γ · τ)
= (cτ + d)kf(τ) + (cτ + d)kg(τ)

= (cτ + d)k(f + g)(τ).

(iii) Bounded growth. If we have A,B,C,D > 0 such that |f(τ)| < A for all Im(τ) > B
and |g(τ)| < C for all Im(τ) > D, then |f(τ) + g(τ)| < A + C for all Im(τ) >
max{B,D} by the triangle inequality. □

Lemma 1.4. If f is a modular form of weight k, then so is −f .

Proof. Negation doesn’t affect the holomorphicity of a function. Automorphy follows
by multiplying the automorphy equation for f by −1. Bounded growth follows from
| − f | = |f |. □

Corollary 1.5. The zero function is a modular form of weight k for all k. Moreover,
the set of all modular forms of a fixed weight k forms an abelian group under addition.
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Proof. All of the properties of modular forms hold for the zero function, and the pre-
vious two lemmas were checking the group operation and negation. Associativity and
commutativity follow from the fact that addition of functions is associative and commu-
tative. □

Remark 1.6. You can check that if f is a modular form of weight k, then c · f is a
modular form of weight k for any c ∈ C. It follows that the abelian group of weight k
modular forms is even a complex vector space.

Alright, what about multiplying modular forms?

Lemma 1.7. Let f1 and f2 be modular forms of weights k1 and k2, respectively. Then
f1 · f2 is a modular form of weight k1 + k2.

Proof. Holomorphicity is preserved under multiplication. For bounded growth, the check
boils down to noting that |f1 · f2| = |f1| · |f2|. It remains to check automorphy:

f1 · f2(γ · τ) = f1(γ · τ) · f2(γ · τ)
= (cτ + d)k1f1(τ) · (cτ + d)k2f2(τ)

= (cτ + d)k1+k2f1 · f2(τ). □

Altogether, we’ve shown that modular forms fit together in a graded ring.

Corollary 1.8. Let MFk denote the abelian group of modular forms of weight k. Then
MF∗ =

⊕
k≥0MFk is a graded ring.

1.1. Fundamental domain. Thanks to automorphy, we really only need to understand
the behavior of a modular form on a fundamental domain of the action of SL2(Z) on
H̄ := H∪{z : Im(z) = 0}∪{∞}. I’ll draw a picture of the fundamental domain in class,
but it’s an excellent exercise to work it out for yourself.

Exercise 1.9. Prove that the fundamental domain for the action of SL2(Z) on H̄ is
{z ∈ H : |z| ≥ 01 and − 1/2 ≤ Re(z) ≤ 0} ∪ {z ∈ H : |z| > 1 and 0 < Re(z) < 1/2}.

Hint: start by showing that SL2(Z) is generated by

(
0 −1
1 0

)
and

(
1 1
0 1

)
.

1.2. Examples. Let’s see a couple other modular forms.

Example 1.10 (Modular discriminant). The most famous is the modular discriminant

∆(τ) := g32(τ)− 27g23(τ),

where g2 := 60G4 and g3 := 140G6. Since MF∗ is a graded ring, we find that ∆ is a
modular form of weight 12. If you’re curious about where ∆ comes from, try taking the
discriminant of 4x3 − g2x− g3 (the right hand side of the ODE for ℘ from last time).
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Example 1.11 (Theta functions of even unimodular lattices). A lattice Λ ⊂ Rn is uni-
modular if it is generated by n vectors who form the columns of a matrix of determinant
1. A unimodular lattice Λ is called even if its generating vectors v1, . . . , vn all satisfy
⟨vi, vi⟩ ∈ 2Z.

Here’s a particular construction of even unimodular lattices that will be useful in today’s
exercises. Let n ≥ 1. Let Λ ⊂ R8n be the lattice consisting of vectors λ such that
2λ ∈ Z8n, with all components of 2λ even or all components odd, and such that the sum
of the components of λ is an even integer. We denote this lattice by L8n.

Given a lattice Λ ⊂ Rn, define the theta function

ϑΛ(τ) :=
∑
λ∈Λ

eπi⟨λ,λ⟩τ ,

where τ ∈ H.1 If Λ ⊂ Rn is even and unimodular, then ϑ is a modular form of weight
k/2:

(i) To see that ϑΛ(τ) is holomorphic, note that τ ∈ H implies that Re(iτ) < 0. In
particular, the real part of each summand of ϑΛ(τ) is negative. Now for any radius
r > 0, there are finitely many lattice points within radius r of the origin. We can
thus apply the same techniques we used in proving that ℘ is absolutely convergent
and converges uniformly on compact sets.

(ii) Since SL2(Z) is generated by

(
0 −1
1 0

)
and

(
1 1
0 1

)
, it suffices to check automorphy

for under the action of these two matrices. In other words, we need to check that
ϑΛ(−1/τ) = τ k/2ϑΛ(τ) and ϑΛ(τ + 1) = ϑΛ(τ).

The latter is easy to check: our assumption that Λ is even implies that ⟨λ, λ⟩ is an
even integer for all λ ∈ Λ, so eπi⟨λ,λ⟩ = 1. This gives us translation invariance.

Inversion is slightly trickier, and we’ll have to skip it for time’s sake. Here’s the
rough idea; read more about it if it sounds interesting to you! Our assumption
that Λ is unimodular implies that Λ = Λ∗. Now the Poisson summation formula
relates

∑
Λ f(λ) = 1

µ(Rn/Λ)

∑
Λ∗ f̂(λ′), where f(λ) = eπi⟨λ,λ⟩τ and f̂ is the Fourier

transform. Applying this formula carefully results in the desired inversion formula.

(iii) Bounded growth comes from our observation in (i). Writing τ = x+ iy with y > 0,
we have

|ϑΛ(τ)| ≤
∑
λ∈Λ

|eπi⟨λ,λ⟩τ |

=
∑
λ∈Λ

|e−π⟨λ,λ⟩y| · |eπi⟨λ,λ⟩x|

=
∑
λ∈Λ

e−π⟨λ,λ⟩y.

One can now directly check that this satisfies bounded growth.

1The LATEX for ϑ is \vartheta.
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Exercise 1.12. Show that L8n is even and unimodular for each n ≥ 1. Then show that
the lattices L8 × L8 and L16 are not similar. Deduce that the manifolds R16/(L8 × L8)
and R16/L16 are not isometric.

I could go on and on, but we’re about to see that these examples are superfluous from
one point of view.

2. There aren’t that many modular forms

Although MF∗ is a ring, its objects are analytic objects. In my personal experience,
whenever you have a ring of analytic objects, that ring is usually infinitely generated or
some other sort of nonsense. Not so for MF∗:

Theorem 2.1. There is an isomorphism MF∗ ∼= C[G4, G6] of C-algebras.

Proof. Two good places to see a proof are [Zag08, §2.1] or [Lan95, §2]. Here’s the general
idea. The C-algebra structure on MF∗ comes from viewing each MFk as a C-vector space.
The proof now proceeds via some dimension counting and a check that G4 and G6 are
algebraically independent. If we have time next class, we’ll do this in more detail. □

Remark 2.2. You should now be saying, “Wait a minute, what about all the other
Eisenstein series?” Well, they satisfy a pretty crazy recurrence relation. Let dk =
(2k + 3)k!G2k+4 for k ≥ 0. Then

dn+2 =
3n+ 6

2n+ 9

n∑
k=0

(
n

k

)
dkdn−k

for all n ≥ 0. We won’t prove this, but you might find it to be a fun exercise.

In particular, once you know G4 and G6, the remaining Eisenstein series are given by a
polynomial in G4 and G6. The coefficients of such a polynomial are rational — are they
ever integers?

2.1. You can’t hear the shape of a drum. As an application of this theorem, let’s
come back to those theta functions of even unimodular lattices.

Exercise 2.3. Prove that ϑL8×L8(τ) = ϑL16(τ).

Exercise 2.4. Let Λ,Λ1,Λ2 ⊂ Rn be lattices.

(i) Show that the eigenbasis of the Laplacian ∇2 =
∑

i
∂2

∂x2
i
on Rn/Λ consists of the

functions v 7→ e2πi⟨λ
∗,v⟩ with eigenvalues−(2π)2⟨λ∗, λ∗⟩, where λ∗ ∈ Λ∗ is an element

of the dual lattice.

(ii) Prove that Rn/Λ1 and Rn/Λ2 are isospectral2 if and only if ϑΛ1 = ϑΛ2 . (Note that
we are not assuming here that Λi are even or unimodular. The definition of the
theta function still holds, although ϑ may not be a modular form.)

2Two manifolds are isospectral if their Laplacians have the same set of eigenvalues (counted with
multiplicity).
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Remark 2.5. Together, Exercises 1.12, 2.3, and 2.4 imply that R16/(L8 × L8) and
R16/L16 are isospectral but not isometric. In particular, these are two “drums” that do
not “sound the same”. This example was first observed by Milnor.

Daily exercises: I decided to stop collecting the exercises here. If you really want me
to put them at the end of the notes like before, let me know!

Next time: elliptic curves.
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